
Automatic Memory
Management

Martin Kellogg

Course Announcements

● As some of you have noticed, the PA4 leaderboard results are
subject to timing variance
○ In particular, sometimes you “get lucky” and your compiler’s

code appears to be much, much faster than the reference
○ There’s not much I can do about this, unfortunately.
○ We will run each final submission several times and take the

median Q score (not the best), so if you see a big speedup
without doing anything, you should assume it is ephemeral

● PA4c1 is due on Monday
● I will not hold office hours next Wednesday

Agenda

● Why Automatic Memory Management?
● Garbage Collection
● Three Techniques

○ Mark and Sweep
○ Stop and Copy
○ Reference Counting

Motivation: Why Automatic Mem. Mgmt.?

● Storage management is still a hard problem in modern programming

Motivation: Why Automatic Mem. Mgmt.?

● Storage management is still a hard problem in modern programming
● Programs in languages like C and C++ have many storage bugs

Motivation: Why Automatic Mem. Mgmt.?

● Storage management is still a hard problem in modern programming
● Programs in languages like C and C++ have many storage bugs

○ forgetting to free unused memory

Motivation: Why Automatic Mem. Mgmt.?

● Storage management is still a hard problem in modern programming
● Programs in languages like C and C++ have many storage bugs

○ forgetting to free unused memory
○ dereferencing a dangling pointer

Motivation: Why Automatic Mem. Mgmt.?

● Storage management is still a hard problem in modern programming
● Programs in languages like C and C++ have many storage bugs

○ forgetting to free unused memory
○ dereferencing a dangling pointer
○ overwriting parts of a data structure by accident and so on...

(can be big security problems)

Motivation: Why Automatic Mem. Mgmt.?

● Storage management is still a hard problem in modern programming
● Programs in languages like C and C++ have many storage bugs

○ forgetting to free unused memory
○ dereferencing a dangling pointer
○ overwriting parts of a data structure by accident and so on...

(can be big security problems)
● Storage bugs are hard to find

Motivation: Why Automatic Mem. Mgmt.?

● Storage management is still a hard problem in modern programming
● Programs in languages like C and C++ have many storage bugs

○ forgetting to free unused memory
○ dereferencing a dangling pointer
○ overwriting parts of a data structure by accident and so on...

(can be big security problems)
● Storage bugs are hard to find

○ a bug can lead to a visible effect far away in time and program
text from the source

What about Types?

● Some storage bugs can be prevented in a strongly-typed language

What about Types?

● Some storage bugs can be prevented in a strongly-typed language
○ e.g., most type systems guarantee no random access into some

other object’s private data

What about Types?

● Some storage bugs can be prevented in a strongly-typed language
○ e.g., most type systems guarantee no random access into some

other object’s private data
● Can types prevent errors in programs with manual allocation and

deallocation of memory?

What about Types?

● Some storage bugs can be prevented in a strongly-typed language
○ e.g., most type systems guarantee no random access into some

other object’s private data
● Can types prevent errors in programs with manual allocation and

deallocation of memory?
○ Some fancy type systems (linear types) were designed for this

purpose, but they complicate programming significantly

What about Types?

● Some storage bugs can be prevented in a strongly-typed language
○ e.g., most type systems guarantee no random access into some

other object’s private data
● Can types prevent errors in programs with manual allocation and

deallocation of memory?
○ Some fancy type systems (linear types) were designed for this

purpose, but they complicate programming significantly
○ So, in theory, yes

What about Types?

● Some storage bugs can be prevented in a strongly-typed language
○ e.g., most type systems guarantee no random access into some

other object’s private data
● Can types prevent errors in programs with manual allocation and

deallocation of memory?
○ Some fancy type systems (linear types) were designed for this

purpose, but they complicate programming significantly
○ So, in theory, yes

● If you want type safety in practice then you must use automatic
memory management

Automatic Memory Management

Automatic Memory Management

● This is an old problem
○ studied since the 1950s for Lisp

Automatic Memory Management

● This is an old problem
○ studied since the 1950s for Lisp

● There are several well-known techniques for completely
automatic memory management

Automatic Memory Management

● This is an old problem
○ studied since the 1950s for Lisp

● There are several well-known techniques for completely
automatic memory management
○ These are dynamic analyses

Automatic Memory Management

● This is an old problem
○ studied since the 1950s for Lisp

● There are several well-known techniques for completely
automatic memory management
○ These are dynamic analyses

■ That is, they involve instrumenting the program so that
its behavior at run time is different

Automatic Memory Management

● This is an old problem
○ studied since the 1950s for Lisp

● There are several well-known techniques for completely
automatic memory management
○ These are dynamic analyses

■ That is, they involve instrumenting the program so that
its behavior at run time is different

You are probably familiar with some
other dynamic analysis techniques like:
● testing
● code coverage

Automatic Memory Management

● This is an old problem
○ studied since the 1950s for Lisp

● There are several well-known techniques for completely
automatic memory management
○ These are dynamic analyses

■ That is, they involve instrumenting the program so that
its behavior at run time is different

■ In particular, we want it to automatically free memory :)

Automatic Memory Management

● This is an old problem
○ studied since the 1950s for Lisp

● There are several well-known techniques for completely
automatic memory management
○ These are dynamic analyses

■ That is, they involve instrumenting the program so that
its behavior at run time is different

■ In particular, we want it to automatically free memory :)
● Until relatively recently (Java), these techniques were not

popular outside the Lisp family of languages
○ Just like static type safety used to be unpopular…

Automatic Memory Management: Basic Idea

Automatic Memory Management: Basic Idea

● When an object that takes memory space is created, unused
space is automatically allocated
○ In Cool, new objects are created by new X

Automatic Memory Management: Basic Idea

● When an object that takes memory space is created, unused
space is automatically allocated
○ In Cool, new objects are created by new X

● After a while there is no more unused space

Automatic Memory Management: Basic Idea

● When an object that takes memory space is created, unused
space is automatically allocated
○ In Cool, new objects are created by new X

● After a while there is no more unused space
● Some space is occupied by objects that will never be used again

(= dead objects?)

Automatic Memory Management: Basic Idea

● When an object that takes memory space is created, unused
space is automatically allocated
○ In Cool, new objects are created by new X

● After a while there is no more unused space
● Some space is occupied by objects that will never be used again

(= dead objects?)
● This space can be freed to be reused later

Dead Again?

● How can we tell whether an object will “never be used again”?

Dead Again?

● How can we tell whether an object will “never be used again”?
○ In general it is impossible (undecidable) to tell (cf. liveness)

Dead Again?

● How can we tell whether an object will “never be used again”?
○ In general it is impossible (undecidable) to tell (cf. liveness)
○ We will have to use a heuristic to find many (not all) objects

that will never be used again

Dead Again?

● How can we tell whether an object will “never be used again”?
○ In general it is impossible (undecidable) to tell (cf. liveness)
○ We will have to use a heuristic to find many (not all) objects

that will never be used again
● Observation: a program can use only the objects that it can find.

Dead Again?

● How can we tell whether an object will “never be used again”?
○ In general it is impossible (undecidable) to tell (cf. liveness)
○ We will have to use a heuristic to find many (not all) objects

that will never be used again
● Observation: a program can use only the objects that it can find.
● For example:

let x : A <- new A in { x <- y; ... }

Dead Again?

● How can we tell whether an object will “never be used again”?
○ In general it is impossible (undecidable) to tell (cf. liveness)
○ We will have to use a heuristic to find many (not all) objects

that will never be used again
● Observation: a program can use only the objects that it can find.
● For example:

let x : A <- new A in { x <- y; ... }

● After x <- y there is no way to access the newly allocated
object

Garbage

● Definition: An object x is reachable if and only if:

Garbage

● Definition: An object x is reachable if and only if:
○ A local variable (or register) contains a pointer to x, or

Garbage

● Definition: An object x is reachable if and only if:
○ A local variable (or register) contains a pointer to x, or
○ Another reachable object y contains a pointer to x

Garbage

● Definition: An object x is reachable if and only if:
○ A local variable (or register) contains a pointer to x, or
○ Another reachable object y contains a pointer to x

■ (Note that self is a local variable in Cool)

Garbage

● Definition: An object x is reachable if and only if:
○ A local variable (or register) contains a pointer to x, or
○ Another reachable object y contains a pointer to x

■ (Note that self is a local variable in Cool)
● You can find all reachable objects by starting from local variables

and following all the pointers (“transitive”)

Garbage

● Definition: An object x is reachable if and only if:
○ A local variable (or register) contains a pointer to x, or
○ Another reachable object y contains a pointer to x

■ (Note that self is a local variable in Cool)
● You can find all reachable objects by starting from local variables

and following all the pointers (“transitive”)
● An unreachable object can never be referred to by

the program

Garbage

● Definition: An object x is reachable if and only if:
○ A local variable (or register) contains a pointer to x, or
○ Another reachable object y contains a pointer to x

■ (Note that self is a local variable in Cool)
● You can find all reachable objects by starting from local variables

and following all the pointers (“transitive”)
● An unreachable object can never be referred to by

the program
○ Such objects are called garbage

Reachability is an Approximation

Reachability is an Approximation

● Consider the program:
x <- new Ant;
y <- new Bat;
x <- y;
if alwaysTrue() then x <- new Cow else x.eat() fi

Reachability is an Approximation

● Consider the program:
x <- new Ant;
y <- new Bat;
x <- y;
if alwaysTrue() then x <- new Cow else x.eat() fi

● After x <- y (assuming y becomes dead there):

Reachability is an Approximation

● Consider the program:
x <- new Ant;
y <- new Bat;
x <- y;
if alwaysTrue() then x <- new Cow else x.eat() fi

● After x <- y (assuming y becomes dead there):
○ The Ant object is not reachable anymore

Reachability is an Approximation

● Consider the program:
x <- new Ant;
y <- new Bat;
x <- y;
if alwaysTrue() then x <- new Cow else x.eat() fi

● After x <- y (assuming y becomes dead there):
○ The Ant object is not reachable anymore
○ The Bat object is reachable (through x)

Reachability is an Approximation

● Consider the program:
x <- new Ant;
y <- new Bat;
x <- y;
if alwaysTrue() then x <- new Cow else x.eat() fi

● After x <- y (assuming y becomes dead there):
○ The Ant object is not reachable anymore
○ The Bat object is reachable (through x)
○ Thus the Bat is not garbage and is not collected

Reachability is an Approximation

● Consider the program:
x <- new Ant;
y <- new Bat;
x <- y;
if alwaysTrue() then x <- new Cow else x.eat() fi

● After x <- y (assuming y becomes dead there):
○ The Ant object is not reachable anymore
○ The Bat object is reachable (through x)
○ Thus the Bat is not garbage and is not collected
○ But the Bat object is never going to be used

Cool Garbage

Cool Garbage

● Recall that at run-time, a Cool interpreter has two mappings:

Cool Garbage

● Recall that at run-time, a Cool interpreter has two mappings:
○ Environment E maps variable identifiers to locations
○ Store S maps locations to values

Operational Semantics!

Cool Garbage

● Recall that at run-time, a Cool interpreter has two mappings:
○ Environment E maps variable identifiers to locations
○ Store S maps locations to values

● Proposed Cool garbage collector algorithm:

Cool Garbage

● Recall that at run-time, a Cool interpreter has two mappings:
○ Environment E maps variable identifiers to locations
○ Store S maps locations to values

● Proposed Cool garbage collector algorithm:
○ for each location l ∈ domain(S)

Cool Garbage

● Recall that at run-time, a Cool interpreter has two mappings:
○ Environment E maps variable identifiers to locations
○ Store S maps locations to values

● Proposed Cool garbage collector algorithm:
○ for each location l ∈ domain(S)

■ let can_reach = false

Cool Garbage

● Recall that at run-time, a Cool interpreter has two mappings:
○ Environment E maps variable identifiers to locations
○ Store S maps locations to values

● Proposed Cool garbage collector algorithm:
○ for each location l ∈ domain(S)

■ let can_reach = false
■ for each (v, l

2
) ∈ E

Cool Garbage

● Recall that at run-time, a Cool interpreter has two mappings:
○ Environment E maps variable identifiers to locations
○ Store S maps locations to values

● Proposed Cool garbage collector algorithm:
○ for each location l ∈ domain(S)

■ let can_reach = false
■ for each (v, l

2
) ∈ E

● if l = l
2

 then can_reach = true

Cool Garbage

● Recall that at run-time, a Cool interpreter has two mappings:
○ Environment E maps variable identifiers to locations
○ Store S maps locations to values

● Proposed Cool garbage collector algorithm:
○ for each location l ∈ domain(S)

■ let can_reach = false
■ for each (v, l

2
) ∈ E

● if l = l
2

 then can_reach = true
■ if not can_reach then reclaim_location(l)

Cool Garbage

● Recall that at run-time, a Cool interpreter has two mappings:
○ Environment E maps variable identifiers to locations
○ Store S maps locations to values

● Proposed Cool garbage collector algorithm:
○ for each location l ∈ domain(S)

■ let can_reach = false
■ for each (v, l

2
) ∈ E

● if l = l
2

 then can_reach = true
■ if not can_reach then reclaim_location(l)

Does this work?

Does That Work?

Cooler Garbage

● Recall that at run-time, a Cool interpreter has two mappings:
○ Environment E maps variable identifiers to locations
○ Store S maps locations to values

● Proposed Cool garbage collector algorithm:
○ for each location l ∈ domain(S)

■ let can_reach = false
■ for each (v, l

2
) ∈ E

● if l = l
2

 then can_reach = true

Cooler Garbage

● Recall that at run-time, a Cool interpreter has two mappings:
○ Environment E maps variable identifiers to locations
○ Store S maps locations to values

● Proposed Cool garbage collector algorithm:
○ for each location l ∈ domain(S)

■ let can_reach = false
■ for each (v, l

2
) ∈ E

● if l = l
2

 then can_reach = true
● for each l

3
 ∈ v

Cooler Garbage

● Recall that at run-time, a Cool interpreter has two mappings:
○ Environment E maps variable identifiers to locations
○ Store S maps locations to values

● Proposed Cool garbage collector algorithm:
○ for each location l ∈ domain(S)

■ let can_reach = false
■ for each (v, l

2
) ∈ E

● if l = l
2

 then can_reach = true
● for each l

3
 ∈ v // v is X(..., ai = li, …)

Cooler Garbage

● Recall that at run-time, a Cool interpreter has two mappings:
○ Environment E maps variable identifiers to locations
○ Store S maps locations to values

● Proposed Cool garbage collector algorithm:
○ for each location l ∈ domain(S)

■ let can_reach = false
■ for each (v, l

2
) ∈ E

● if l = l
2

 then can_reach = true
● for each l

3
 ∈ v // v is X(..., ai = li, …)

○ if l = l
3

 then can_reach = true

Cooler Garbage

● Recall that at run-time, a Cool interpreter has two mappings:
○ Environment E maps variable identifiers to locations
○ Store S maps locations to values

● Proposed Cool garbage collector algorithm:
○ for each location l ∈ domain(S)

■ let can_reach = false
■ for each (v, l

2
) ∈ E

● if l = l
2

 then can_reach = true
● for each l

3
 ∈ v // v is X(..., ai = li, …)

○ if l = l
3

 then can_reach = true
■ if not can_reach then reclaim_location(l)

Garbage Analysis

● Could we use this proposed Cooler Garbage Collector in
real life?

Garbage Analysis

● Could we use this proposed Cooler Garbage Collector in
real life?
○ How long would it take?
○ How much space would it take?
○ Are we forgetting anything?

Garbage Analysis

● Could we use this proposed Cooler Garbage Collector in
real life?
○ How long would it take?
○ How much space would it take?
○ Are we forgetting anything?

■ Hint: Yes. It's still wrong

Tracing Reachable Values

Tracing Reachable Values

● In Cool, local variables are easy to find:

Tracing Reachable Values

● In Cool, local variables are easy to find:
○ Use the environment mapping E

Tracing Reachable Values

● In Cool, local variables are easy to find:
○ Use the environment mapping E

■ and one object may point to other objects, etc.

Tracing Reachable Values

● In Cool, local variables are easy to find:
○ Use the environment mapping E

■ and one object may point to other objects, etc.
● The stack is more complex:

Tracing Reachable Values

● In Cool, local variables are easy to find:
○ Use the environment mapping E

■ and one object may point to other objects, etc.
● The stack is more complex:

○ each stack frame (activation record) contains:

Tracing Reachable Values

● In Cool, local variables are easy to find:
○ Use the environment mapping E

■ and one object may point to other objects, etc.
● The stack is more complex:

○ each stack frame (activation record) contains:
■ method parameters! (which are other objects…)

Tracing Reachable Values

● In Cool, local variables are easy to find:
○ Use the environment mapping E

■ and one object may point to other objects, etc.
● The stack is more complex:

○ each stack frame (activation record) contains:
■ method parameters! (which are other objects…)

● If we know the layout of a stack frame we can find the pointers
(objects) in it

Tracing Reachable Values

● In Cool, local variables are easy to find:
○ Use the environment mapping E

■ and one object may point to other objects, etc.
● The stack is more complex:

○ each stack frame (activation record) contains:
■ method parameters! (which are other objects…)

● If we know the layout of a stack frame we can find the pointers
(objects) in it

Reachability can be tricky!
● Many things may look

legitimate and reachable
but will turn out not to be

● How can we figure this
out systematically?

A Simple Example

A Simple Example

local
variables

A Simple Example

A B C D Elocal
variables

A Simple Example

A B C D Elocal
variables

A Simple Example

A B C D Elocal
variables

stack

A Simple Example

A B C D E

frame 1 frame 2

local
variables

stack

A Simple Example

● Start tracing from local vars and the stack

A B C D E

frame 1 frame 2

local
variables

stack

A Simple Example

● Start tracing from local vars and the stack
○ They are called the roots

A B C D E

frame 1 frame 2

local
variables

stack

A Simple Example

● Start tracing from local vars and the stack
○ They are called the roots

● Note that B and D are not reachable from other local vars or the
stack
○ Thus we can reuse their storage when they go out of scope

A B C D E

frame 1 frame 2

local
variables

stack

Elements of Garbage Collection

● Every garbage collection scheme has the following steps

Elements of Garbage Collection

● Every garbage collection scheme has the following steps
○ Allocate space as needed for new objects

Elements of Garbage Collection

● Every garbage collection scheme has the following steps
○ Allocate space as needed for new objects
○ When space runs out:

Elements of Garbage Collection

● Every garbage collection scheme has the following steps
○ Allocate space as needed for new objects
○ When space runs out:

■ Compute what objects might be used again

Elements of Garbage Collection

● Every garbage collection scheme has the following steps
○ Allocate space as needed for new objects
○ When space runs out:

■ Compute what objects might be used again
● generally by tracing objects reachable from a set of

roots

Elements of Garbage Collection

● Every garbage collection scheme has the following steps
○ Allocate space as needed for new objects
○ When space runs out:

■ Compute what objects might be used again
● generally by tracing objects reachable from a set of

roots
■ Free space used by objects not found in the previous step

Elements of Garbage Collection

● Every garbage collection scheme has the following steps
○ Allocate space as needed for new objects
○ When space runs out:

■ Compute what objects might be used again
● generally by tracing objects reachable from a set of

roots
■ Free space used by objects not found in the previous step

● Some strategies perform garbage collection before the space
actually runs out

Elements of Garbage Collection

● Every garbage collection scheme has the following steps
○ Allocate space as needed for new objects
○ When space runs out:

■ Compute what objects might be used again
● generally by tracing objects reachable from a set of

roots
■ Free space used by objects not found in the previous step

● Some strategies perform garbage collection before the space
actually runs out
○ Why might this be useful?

Elements of Garbage Collection

● Every garbage collection scheme has the following steps
○ Allocate space as needed for new objects
○ When space runs out:

■ Compute what objects might be used again
● generally by tracing objects reachable from a set of

roots
■ Free space used by objects not found in the previous step

● Some strategies perform garbage collection before the space
actually runs out
○ Why might this be useful?

■ Hint: will we need any space to run our garbage collector?

Elements of Garbage Collection

● Every garbage collection scheme has the following steps
○ Allocate space as needed for new objects
○ When space runs out:

■ Compute what objects might be used again
● generally by tracing objects reachable from a set of

roots
■ Free space used by objects not found in the previous step

● Some strategies perform garbage collection before the space
actually runs out
○ Why might this be useful?

■ Hint: will we need any space to run our garbage collector?

After trivia, we will see three
specific garbage collection
algorithms:
● mark and sweep
● stop and copy
● reference counting

Trivia Break: Music Theory

This musical symbol (examples highlighted in blue below) indicates
which notes are represented by the lines and spaces on a musical
staff. Its position on a staff assigns a particular pitch to one of the five
lines or four spaces, which defines the pitches on the remaining lines
and spaces. The modern symbols derive from the medieval practice of
annotating the reference line of a staff with the name of the note it
was intended to bear; over time the shapes of these letters became
stylised, leading to their current versions.

Trivia Break: Programming Languages

This general-purpose high-level programming language supports
multiple paradigms. Its features include automatic memory
management, a strong type system, and good support for
internationalization and portability. Its creators originally released it
in 2000 as a closed-source language, aligning with their business
goals at the time. However, in the decades since, the company
responsible for the language has changed its attitude towards
open-source, and in 2014 the open-source Roslyn compiler for this
language was released; it has been the primary compiler for the
language since. The language is famously used in game development
(e.g., it is the default scripting language in the Unity game engine).

Mark and Sweep

● Our first garbage collection algorithm

Mark and Sweep

● Our first garbage collection algorithm
● When memory runs out, GC executes two phases:

Mark and Sweep

● Our first garbage collection algorithm
● When memory runs out, GC executes two phases:

○ the mark phase: traces reachable objects

Mark and Sweep

● Our first garbage collection algorithm
● When memory runs out, GC executes two phases:

○ the mark phase: traces reachable objects
○ the sweep phase: collects garbage objects

Mark and Sweep

● Our first garbage collection algorithm
● When memory runs out, GC executes two phases:

○ the mark phase: traces reachable objects
○ the sweep phase: collects garbage objects

● Every object has an extra bit: the mark bit

Mark and Sweep

● Our first garbage collection algorithm
● When memory runs out, GC executes two phases:

○ the mark phase: traces reachable objects
○ the sweep phase: collects garbage objects

● Every object has an extra bit: the mark bit
○ reserved for memory management
○ initially the mark bit is 0

Mark and Sweep

● Our first garbage collection algorithm
● When memory runs out, GC executes two phases:

○ the mark phase: traces reachable objects
○ the sweep phase: collects garbage objects

● Every object has an extra bit: the mark bit
○ reserved for memory management
○ initially the mark bit is 0
○ set to 1 for the reachable objects in the mark phase

Mark and Sweep

● Our first garbage collection algorithm
● When memory runs out, GC executes two phases:

○ the mark phase: traces reachable objects
○ the sweep phase: collects garbage objects

● Every object has an extra bit: the mark bit
○ reserved for memory management
○ initially the mark bit is 0
○ set to 1 for the reachable objects in the mark phase

● In the sweep phase, free all objects whose mark bit is still 0

Mark and Sweep

● Our first garbage collection algorithm
● When memory runs out, GC executes two phases:

○ the mark phase: traces reachable objects
○ the sweep phase: collects garbage objects

● Every object has an extra bit: the mark bit
○ reserved for memory management
○ initially the mark bit is 0
○ set to 1 for the reachable objects in the mark phase

● In the sweep phase, free all objects whose mark bit is still 0
○ creating a free list of garbage that can be reused

Mark and Sweep: Example

Mark and Sweep: Example

Mark and Sweep: Example

Mark and Sweep: Example

The Mark Phase: Algorithm

The Mark Phase: Algorithm

let todo = { all roots } (* worklist *)

The Mark Phase: Algorithm

let todo = { all roots } (* worklist *)
while todo is non-empty ; do

The Mark Phase: Algorithm

let todo = { all roots } (* worklist *)
while todo is non-empty ; do

pick v ∈ todo
todo <- todo - { v }

The Mark Phase: Algorithm

let todo = { all roots } (* worklist *)
while todo is non-empty ; do

pick v ∈ todo
todo <- todo - { v }
if mark(v) = 0 then (* v is unmarked so far *)

The Mark Phase: Algorithm

let todo = { all roots } (* worklist *)
while todo is non-empty ; do

pick v ∈ todo
todo <- todo - { v }
if mark(v) = 0 then (* v is unmarked so far *)

mark(v) <- 1

The Mark Phase: Algorithm

let todo = { all roots } (* worklist *)
while todo is non-empty ; do

pick v ∈ todo
todo <- todo - { v }
if mark(v) = 0 then (* v is unmarked so far *)

mark(v) <- 1
let v

1
, ..., v

n
 be the pointers contained in v

The Mark Phase: Algorithm

let todo = { all roots } (* worklist *)
while todo is non-empty ; do

pick v ∈ todo
todo <- todo - { v }
if mark(v) = 0 then (* v is unmarked so far *)

mark(v) <- 1
let v

1
, ..., v

n
 be the pointers contained in v

todo <- todo U {v
1

, ..., v
n
}

The Mark Phase: Algorithm

let todo = { all roots } (* worklist *)
while todo is non-empty ; do

pick v ∈ todo
todo <- todo - { v }
if mark(v) = 0 then (* v is unmarked so far *)

mark(v) <- 1
let v

1
, ..., v

n
 be the pointers contained in v

todo <- todo U {v
1

, ..., v
n
}

fi
od

The Sweep Phase

The Sweep Phase

● The sweep phase scans the entire heap looking
for objects with mark bit 0

The Sweep Phase

● The sweep phase scans the entire heap looking
for objects with mark bit 0
○ these objects have not been visited in the

mark phase

The Sweep Phase

● The sweep phase scans the entire heap looking
for objects with mark bit 0
○ these objects have not been visited in the

mark phase
○ and so they are garbage

The Sweep Phase

● The sweep phase scans the entire heap looking
for objects with mark bit 0
○ these objects have not been visited in the

mark phase
○ and so they are garbage

● Any such object is added to the free list

The Sweep Phase

● The sweep phase scans the entire heap looking
for objects with mark bit 0
○ these objects have not been visited in the

mark phase
○ and so they are garbage

● Any such object is added to the free list
● The objects with a mark bit of 1 have their mark

bit reset to 0

The Sweep Phase: Algorithm

The Sweep Phase: Algorithm

/* sizeof(p) is size of block starting at p */

The Sweep Phase: Algorithm

/* sizeof(p) is size of block starting at p */
p <- bottom of heap

The Sweep Phase: Algorithm

/* sizeof(p) is size of block starting at p */
p <- bottom of heap
while p < top of heap do

The Sweep Phase: Algorithm

/* sizeof(p) is size of block starting at p */
p <- bottom of heap
while p < top of heap do

if mark(p) = 1 then
mark(p) <- 0

The Sweep Phase: Algorithm

/* sizeof(p) is size of block starting at p */
p <- bottom of heap
while p < top of heap do

if mark(p) = 1 then
mark(p) <- 0

else
add block p...(p+sizeof(p)-1) to freelist

fi

The Sweep Phase: Algorithm

/* sizeof(p) is size of block starting at p */
p <- bottom of heap
while p < top of heap do

if mark(p) = 1 then
mark(p) <- 0

else
add block p...(p+sizeof(p)-1) to freelist

fi
p <- p + sizeof(p)

od

Mark and Sweep: Analysis

Mark and Sweep: Analysis

● While conceptually simple, this algorithm has a number of
tricky details

Mark and Sweep: Analysis

● While conceptually simple, this algorithm has a number of
tricky details
○ this is typical of GC algorithms

Mark and Sweep: Analysis

● While conceptually simple, this algorithm has a number of
tricky details
○ this is typical of GC algorithms

● There is a serious problem with the mark phase:

Mark and Sweep: Analysis

● While conceptually simple, this algorithm has a number of
tricky details
○ this is typical of GC algorithms

● There is a serious problem with the mark phase:
○ it is invoked when we are out of space

Mark and Sweep: Analysis

● While conceptually simple, this algorithm has a number of
tricky details
○ this is typical of GC algorithms

● There is a serious problem with the mark phase:
○ it is invoked when we are out of space
○ yet it needs space to construct the todo list

Mark and Sweep: Analysis

● While conceptually simple, this algorithm has a number of
tricky details
○ this is typical of GC algorithms

● There is a serious problem with the mark phase:
○ it is invoked when we are out of space
○ yet it needs space to construct the todo list

■ the size of the todo list is unbounded, so we cannot
reserve space for it a priori

Mark and Sweep: Details

● The todo list is used as an auxiliary data structure to perform
the reachability analysis

Mark and Sweep: Details

● The todo list is used as an auxiliary data structure to perform
the reachability analysis

● There is a trick that allows the auxiliary data to be stored in the
objects themselves

Mark and Sweep: Details

● The todo list is used as an auxiliary data structure to perform
the reachability analysis

● There is a trick that allows the auxiliary data to be stored in the
objects themselves
○ pointer reversal: when a pointer is followed it is reversed to

point to its parent

Mark and Sweep: Details

● The todo list is used as an auxiliary data structure to perform
the reachability analysis

● There is a trick that allows the auxiliary data to be stored in the
objects themselves
○ pointer reversal: when a pointer is followed it is reversed to

point to its parent
● Similarly, the free list is stored in the free objects themselves

Mark and Sweep: Evaluation

Mark and Sweep: Evaluation

● Space for each new object is allocated from the free list

Mark and Sweep: Evaluation

● Space for each new object is allocated from the free list
○ a block large enough is picked

Mark and Sweep: Evaluation

● Space for each new object is allocated from the free list
○ a block large enough is picked
○ an area of the necessary size is allocated from it

■ the leftover is put back in the free list

Mark and Sweep: Evaluation

● Space for each new object is allocated from the free list
○ a block large enough is picked
○ an area of the necessary size is allocated from it

■ the leftover is put back in the free list
● Disadvantage: mark and sweep can fragment memory

○ why is this a problem?

Mark and Sweep: Evaluation

● Space for each new object is allocated from the free list
○ a block large enough is picked
○ an area of the necessary size is allocated from it

■ the leftover is put back in the free list
● Disadvantage: mark and sweep can fragment memory

○ why is this a problem?
● Advantage: objects are not moved during GC

○ no need to update the pointers to objects
○ works for languages like C and C++ where it’s difficult to

distinguish pointers from data (more on this later)

Another Technique: Stop and Copy

Another Technique: Stop and Copy

● Memory is organized into two areas:

Another Technique: Stop and Copy

● Memory is organized into two areas:
○ Old space: used for allocation

Another Technique: Stop and Copy

● Memory is organized into two areas:
○ Old space: used for allocation
○ New space: used as a reserve for the GC

Another Technique: Stop and Copy

● Memory is organized into two areas:
○ Old space: used for allocation
○ New space: used as a reserve for the GC

old space new space

heap pointer

Another Technique: Stop and Copy

● Memory is organized into two areas:
○ Old space: used for allocation
○ New space: used as a reserve for the GC

● The heap pointer points to the next free word in the old space

old space new space

heap pointer

Another Technique: Stop and Copy

● Memory is organized into two areas:
○ Old space: used for allocation
○ New space: used as a reserve for the GC

● The heap pointer points to the next free word in the old space
○ Allocation just advances the heap pointer

old space new space

heap pointer

Stop and Copy: Intuition

Stop and Copy: Intuition

● Starts when the old space is full

Stop and Copy: Intuition

● Starts when the old space is full
● Copies all reachable objects from old

space into new space

Stop and Copy: Intuition

● Starts when the old space is full
● Copies all reachable objects from old

space into new space
○ garbage is left behind

Stop and Copy: Intuition

● Starts when the old space is full
● Copies all reachable objects from old

space into new space
○ garbage is left behind
○ after the copy phase the new space

uses less space than the old one before
the collection

Stop and Copy: Intuition

● Starts when the old space is full
● Copies all reachable objects from old

space into new space
○ garbage is left behind
○ after the copy phase the new space

uses less space than the old one before
the collection

● After the copy the roles of the old and new
spaces are reversed and the program
resumes

Stop and Copy: Simple Example

Stop and Copy: Simple Example

Stop and Copy: Simple Example

Stop and Copy: Implementation

Stop and Copy: Implementation

● We need to find all the reachable objects
○ Just as in mark and sweep

Stop and Copy: Implementation

● We need to find all the reachable objects
○ Just as in mark and sweep

● As we find a reachable object we copy it into the new space

Stop and Copy: Implementation

● We need to find all the reachable objects
○ Just as in mark and sweep

● As we find a reachable object we copy it into the new space
○ And we have to fix ALL pointers pointing to it!

Stop and Copy: Implementation

● We need to find all the reachable objects
○ Just as in mark and sweep

● As we find a reachable object we copy it into the new space
○ And we have to fix ALL pointers pointing to it!

● As we copy an object we store in the old copy a forwarding
pointer to the new copy

Stop and Copy: Implementation

● We need to find all the reachable objects
○ Just as in mark and sweep

● As we find a reachable object we copy it into the new space
○ And we have to fix ALL pointers pointing to it!

● As we copy an object we store in the old copy a forwarding
pointer to the new copy
○ When we later reach an object with a forwarding pointer,

we know it was already copied

Stop and Copy: Implementation

● We need to find all the reachable objects
○ Just as in mark and sweep

● As we find a reachable object we copy it into the new space
○ And we have to fix ALL pointers pointing to it!

● As we copy an object we store in the old copy a forwarding
pointer to the new copy
○ When we later reach an object with a forwarding pointer,

we know it was already copied
○ How can we identify forwarding pointers?

Stop and Copy: Implementation

● We need to find all the reachable objects
○ Just as in mark and sweep

● As we find a reachable object we copy it into the new space
○ And we have to fix ALL pointers pointing to it!

● As we copy an object we store in the old copy a forwarding
pointer to the new copy
○ When we later reach an object with a forwarding pointer,

we know it was already copied
○ How can we identify forwarding pointers?

● We also still have the issue of how to implement the traversal
without using extra space

Stop and Copy: Implementation Trick

● Both problems can be solved via the following trick:

Stop and Copy: Implementation Trick

● Both problems can be solved via the following trick:
○ partition the new space into three contiguous regions:

Stop and Copy: Implementation Trick

● Both problems can be solved via the following trick:
○ partition the new space into three contiguous regions:

Stop and Copy: Implementation Trick

● Both problems can be solved via the following trick:
○ partition the new space into three contiguous regions:

Stop and Copy: Implementation Trick

● Both problems can be solved via the following trick:
○ partition the new space into three contiguous regions:

Stop and Copy: Implementation Trick

● Both problems can be solved via the following trick:
○ partition the new space into three contiguous regions:

Stop and Copy: Detailed Example

Stop and Copy: Detailed Example

● Before garbage collection:

Stop and Copy: Detailed Example

● Step 1: Copy the objects pointed by roots and set forwarding
pointers (dotted arrow)

● Step 2: Follow the pointer in the next unscanned object (A)
○ copy the pointed objects (just C in this case)
○ fix the pointer in A
○ set forwarding pointer

Stop and Copy: Detailed Example

● Step 3: Follow the pointer in the next unscanned object (C)
○ copy the pointed objects (F in this case)

Stop and Copy: Detailed Example

● Step 4: Follow the pointer in the next unscanned object (F)
○ the pointed object (A) was already copied. Set the pointer same

as the forwarding pointer

Stop and Copy: Detailed Example

● Step 5: Since scan caught up with alloc, we are done
● Now, we swap the role of the two spaces and then resume the

program

Stop and Copy: Detailed Example

Stop and Copy: Algorithm

Stop and Copy: Algorithm
while scan != alloc do

let O be the object at the scan pointer
for each pointer p contained in O do

find O’ that p points to
if O’ is without a forwarding pointer

copy O’ to new space (update alloc pointer)
set 1st word of old O’ to point to the new copy
change p to point to the new copy of O’

else
set p in O equal to the forwarding pointer

fi
rof
increment scan pointer to the next object

od

Stop and Copy: Details

Stop and Copy: Details

● As with mark and sweep, we must be able to tell how large an
object is when we scan it
○ Is this a problem in Cool?

Stop and Copy: Details

● As with mark and sweep, we must be able to tell how large an
object is when we scan it
○ Is this a problem in Cool?

● We also need to know where the pointers are inside the object
○ How hard is this?

Stop and Copy: Details

● As with mark and sweep, we must be able to tell how large an
object is when we scan it
○ Is this a problem in Cool?

● We also need to know where the pointers are inside the object
○ How hard is this?

● We must also copy any objects pointed to by the stack and update
pointers in the stack

Stop and Copy: Details

● As with mark and sweep, we must be able to tell how large an
object is when we scan it
○ Is this a problem in Cool?

● We also need to know where the pointers are inside the object
○ How hard is this?

● We must also copy any objects pointed to by the stack and update
pointers in the stack
○ This can be an expensive operation in practice…

Stop and Copy: Evaluation

Stop and Copy: Evaluation

● Stop and copy is generally believed to be the fastest GC technique

Stop and Copy: Evaluation

● Stop and copy is generally believed to be the fastest GC technique
● Allocation is very cheap

○ Just increment the heap pointer
● Collection is relatively cheap

○ Especially if there is a lot of garbage
○ Only touch reachable objects

● But some languages do not allow copying
○ C, C++, ...

Stop and Copy: Evaluation

● Stop and copy is generally believed to be the fastest GC technique
● Allocation is very cheap

○ Just increment the heap pointer

Stop and Copy: Evaluation

● Stop and copy is generally believed to be the fastest GC technique
● Allocation is very cheap

○ Just increment the heap pointer
● Collection is relatively cheap

○ Especially if there is a lot of garbage
○ Only touch reachable objects

Stop and Copy: Evaluation

● Stop and copy is generally believed to be the fastest GC technique
● Allocation is very cheap

○ Just increment the heap pointer
● Collection is relatively cheap

○ Especially if there is a lot of garbage
○ Only touch reachable objects

● But some languages do not allow copying
○ C, C++, ...

Why Doesn’t C Allow Copying?

● Garbage collection relies on being able to find all reachable objects
○ And it needs to find all pointers in an object

Why Doesn’t C Allow Copying?

● Garbage collection relies on being able to find all reachable objects
○ And it needs to find all pointers in an object

● In languages like C or C++ it is impossible to identify the contents
of objects in memory

Why Doesn’t C Allow Copying?

● Garbage collection relies on being able to find all reachable objects
○ And it needs to find all pointers in an object

● In languages like C or C++ it is impossible to identify the contents
of objects in memory
○ e.g., how can you tell that a sequence of two memory words is a

list cell (with data and next fields) or a binary tree node (with a
left and right fields)?

Why Doesn’t C Allow Copying?

● Garbage collection relies on being able to find all reachable objects
○ And it needs to find all pointers in an object

● In languages like C or C++ it is impossible to identify the contents
of objects in memory
○ e.g., how can you tell that a sequence of two memory words is a

list cell (with data and next fields) or a binary tree node (with a
left and right fields)?

○ Thus we cannot tell where all the pointers are

Conservative Garbage Collection

● But we can be conservative:

Conservative Garbage Collection

● But we can be conservative:
○ If a memory word “looks like” a pointer, it is considered to be a

pointer

Conservative Garbage Collection

● But we can be conservative:
○ If a memory word “looks like” a pointer, it is considered to be a

pointer
■ e.g., if it is aligned (what does this mean?)

Conservative Garbage Collection

● But we can be conservative:
○ If a memory word “looks like” a pointer, it is considered to be a

pointer
■ e.g., if it is aligned (what does this mean?)
■ it must point to a valid address in the data segment

Conservative Garbage Collection

● But we can be conservative:
○ If a memory word “looks like” a pointer, it is considered to be a

pointer
■ e.g., if it is aligned (what does this mean?)
■ it must point to a valid address in the data segment

○ All such pointers are followed and we overestimate the
reachable objects

Conservative Garbage Collection

● But we can be conservative:
○ If a memory word “looks like” a pointer, it is considered to be a

pointer
■ e.g., if it is aligned (what does this mean?)
■ it must point to a valid address in the data segment

○ All such pointers are followed and we overestimate the
reachable objects

● But we still cannot move objects because we cannot update
pointers to them

Conservative Garbage Collection

● But we can be conservative:
○ If a memory word “looks like” a pointer, it is considered to be a

pointer
■ e.g., if it is aligned (what does this mean?)
■ it must point to a valid address in the data segment

○ All such pointers are followed and we overestimate the
reachable objects

● But we still cannot move objects because we cannot update
pointers to them
○ What if what we thought to be a pointer is actually an account

number?

Conservative Garbage Collection

● But we can be conservative:
○ If a memory word “looks like” a pointer, it is considered to be a

pointer
■ e.g., if it is aligned (what does this mean?)
■ it must point to a valid address in the data segment

○ All such pointers are followed and we overestimate the
reachable objects

● But we still cannot move objects because we cannot update
pointers to them
○ What if what we thought to be a pointer is actually an account

number?

Thus we cannot use stop-and-copy
GC for languages with raw pointer
fields that are indistinguishable
from data at run time

Reference Counting

Reference Counting

● Rather that wait for memory to be exhausted, try to collect an
object when there are no more pointers to it

Reference Counting

● Rather that wait for memory to be exhausted, try to collect an
object when there are no more pointers to it

● Store in each object the number of pointers to that object

Reference Counting

● Rather that wait for memory to be exhausted, try to collect an
object when there are no more pointers to it

● Store in each object the number of pointers to that object
○ This is the reference count

Reference Counting

● Rather that wait for memory to be exhausted, try to collect an
object when there are no more pointers to it

● Store in each object the number of pointers to that object
○ This is the reference count

● Each assignment operation has to manipulate the reference
count

Reference Counting

● Rather that wait for memory to be exhausted, try to collect an
object when there are no more pointers to it

● Store in each object the number of pointers to that object
○ This is the reference count

● Each assignment operation has to manipulate the reference
count
○ How expensive is that?

Reference Counting: Implementation

Reference Counting: Implementation

● new returns an object with a reference count of 1

Reference Counting: Implementation

● new returns an object with a reference count of 1
● If x points to an object then let rc(x) refer to the object’s

reference count

Reference Counting: Implementation

● new returns an object with a reference count of 1
● If x points to an object then let rc(x) refer to the object’s

reference count
● Code generated for every assignment x <- y must be changed:

Reference Counting: Implementation

● new returns an object with a reference count of 1
● If x points to an object then let rc(x) refer to the object’s

reference count
● Code generated for every assignment x <- y must be changed:

rc(y) <- rc(y) + 1
rc(x) <- rc(x) - 1
if (rc(x) == 0) then mark x as free
x <- y

Reference Counting: Implementation

● new returns an object with a reference count of 1
● If x points to an object then let rc(x) refer to the object’s

reference count
● Code generated for every assignment x <- y must be changed:

rc(y) <- rc(y) + 1
rc(x) <- rc(x) - 1
if (rc(x) == 0) then mark x as free
x <- y

● (That’s basically it!)

Reference Counting: Evaluation

● Advantages:

Reference Counting: Evaluation

● Advantages:
○ Easy to implement

Reference Counting: Evaluation

● Advantages:
○ Easy to implement
○ Collects garbage incrementally without large pauses in

the execution
■ Why would we care about that?

Reference Counting: Evaluation

● Advantages:
○ Easy to implement
○ Collects garbage incrementally without large pauses in

the execution
■ Why would we care about that?

● Disadvantages:

Reference Counting: Evaluation

● Advantages:
○ Easy to implement
○ Collects garbage incrementally without large pauses in

the execution
■ Why would we care about that?

● Disadvantages:
○ Manipulating reference counts at each assignment is

very slow

Reference Counting: Evaluation

● Advantages:
○ Easy to implement
○ Collects garbage incrementally without large pauses in

the execution
■ Why would we care about that?

● Disadvantages:
○ Manipulating reference counts at each assignment is

very slow
○ Cannot collect circular structures

Garbage Collection: Evaluation

Garbage Collection: Evaluation

● Automatic memory management avoids some serious storage
bugs

Garbage Collection: Evaluation

● Automatic memory management avoids some serious storage
bugs

● But it takes away control from the programmer

Garbage Collection: Evaluation

● Automatic memory management avoids some serious storage
bugs

● But it takes away control from the programmer
○ e.g., layout of data in memory

Garbage Collection: Evaluation

● Automatic memory management avoids some serious storage
bugs

● But it takes away control from the programmer
○ e.g., layout of data in memory
○ e.g., when is memory deallocated

Garbage Collection: Evaluation

● Automatic memory management avoids some serious storage
bugs

● But it takes away control from the programmer
○ e.g., layout of data in memory
○ e.g., when is memory deallocated

● Most garbage collection implementations stop the execution
during collection
○ not acceptable in real-time applications

Garbage Collection: Other Approaches

Garbage Collection: Other Approaches

● Concurrent: allow the program to run while the collection is
happening

Garbage Collection: Other Approaches

● Concurrent: allow the program to run while the collection is
happening

● Generational: do not scan long-lived objects at every collection
(infant mortality)
○ This approach, in particular, has seen wide adoption in

practice (Java)

Garbage Collection: Other Approaches

● Concurrent: allow the program to run while the collection is
happening

● Generational: do not scan long-lived objects at every collection
(infant mortality)
○ This approach, in particular, has seen wide adoption in

practice (Java)
● Parallel: several collectors working in parallel

Garbage Collection: Other Approaches

● Concurrent: allow the program to run while the collection is
happening

● Generational: do not scan long-lived objects at every collection
(infant mortality)
○ This approach, in particular, has seen wide adoption in

practice (Java)
● Parallel: several collectors working in parallel
● Real-Time / Incremental: no long pauses

Garbage Collection: IRL

Garbage Collection: IRL

● Python uses Reference Counting
○ Because of “extension modules”, they deem it too difficult to

determine the root set
○ Has a special separate cycle detector

● Perl does Reference Counting + cycles

Garbage Collection: IRL

● Python uses Reference Counting
○ Because of “extension modules”, they deem it too difficult to

determine the root set
○ Has a special separate cycle detector

● Perl does Reference Counting + cycles
● Ruby does Mark and Sweep

Garbage Collection: IRL

● Python uses Reference Counting
○ Because of “extension modules”, they deem it too difficult to

determine the root set
○ Has a special separate cycle detector

● Perl does Reference Counting + cycles
● Ruby does Mark and Sweep
● OCaml does (generational) Stop and Copy
● Java does (generational) Stop and Copy
● Node.js does (generational) Stop and Copy

Automatic Memory Management: Summary

Automatic Memory Management: Summary
● An automatic memory management system deallocates objects

when they are no longer used and reclaims their storage space.

Automatic Memory Management: Summary
● An automatic memory management system deallocates objects

when they are no longer used and reclaims their storage space.
● We must be conservative and only free objects that won’t be used

later.

Automatic Memory Management: Summary
● An automatic memory management system deallocates objects

when they are no longer used and reclaims their storage space.
● We must be conservative and only free objects that won’t be used

later.
● Garbage collection scans the heap from a set of roots to find

reachable objects. We saw three algorithms:

Automatic Memory Management: Summary
● An automatic memory management system deallocates objects

when they are no longer used and reclaims their storage space.
● We must be conservative and only free objects that won’t be used

later.
● Garbage collection scans the heap from a set of roots to find

reachable objects. We saw three algorithms:
○ Mark and Sweep uses a per-object mark bit to track which

objects are reachable.

Automatic Memory Management: Summary
● An automatic memory management system deallocates objects

when they are no longer used and reclaims their storage space.
● We must be conservative and only free objects that won’t be used

later.
● Garbage collection scans the heap from a set of roots to find

reachable objects. We saw three algorithms:
○ Mark and Sweep uses a per-object mark bit to track which

objects are reachable.
○ Stop and Copy has low overhead but stalls the program and

requires language support

Automatic Memory Management: Summary
● An automatic memory management system deallocates objects

when they are no longer used and reclaims their storage space.
● We must be conservative and only free objects that won’t be used

later.
● Garbage collection scans the heap from a set of roots to find

reachable objects. We saw three algorithms:
○ Mark and Sweep uses a per-object mark bit to track which

objects are reachable.
○ Stop and Copy has low overhead but stalls the program and

requires language support
○ Reference Counting stores the number of pointers to an object

with that object and frees it when that count reaches zero

Course Announcements

● As some of you have noticed, the PA4 leaderboard results are
subject to timing variance
○ In particular, sometimes you “get lucky” and your compiler’s

code appears to be much, much faster than the reference
○ There’s not much I can do about this, unfortunately.
○ We will run each final submission several times and take the

median Q score (not the best), so if you see a big speedup
without doing anything, you should assume it is ephemeral

● PA4c1 is due on Monday
● I will not hold office hours next Wednesday

