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Course Announcements

● As some of you have noticed, the PA4 leaderboard results are 
subject to timing variance
○ In particular, sometimes you “get lucky” and your compiler’s 

code appears to be much, much faster than the reference
○ There’s not much I can do about this, unfortunately.
○ We will run each final submission several times and take the 

median Q score (not the best), so if you see a big speedup 
without doing anything, you should assume it is ephemeral

● PA4c1 is due on Monday
● I will not hold office hours next Wednesday



Agenda

● Why Automatic Memory Management?
● Garbage Collection
● Three Techniques

○ Mark and Sweep 
○ Stop and Copy 
○ Reference Counting
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Motivation: Why Automatic Mem. Mgmt.?

● Storage management is still a hard problem in modern programming
● Programs in languages like C and C++ have many storage bugs

○ forgetting to free unused memory
○ dereferencing a dangling pointer
○ overwriting parts of a data structure by accident and so on... 

(can be big security problems)
● Storage bugs are hard to find

○ a bug can lead to a visible effect far away in time and program 
text from the source
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What about Types?

● Some storage bugs can be prevented in a strongly-typed language
○ e.g., most type systems guarantee no random access into some 

other object’s private data
● Can types prevent errors in programs with manual allocation and 

deallocation of memory?
○ Some fancy type systems (linear types) were designed for this 

purpose, but they complicate programming significantly
○ So, in theory, yes

● If you want type safety in practice then you must use automatic 
memory management
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Automatic Memory Management

● This is an old problem
○ studied since the 1950s for Lisp

● There are several well-known techniques for completely 
automatic memory management
○ These are dynamic analyses

■ That is, they involve instrumenting the program so that 
its behavior at run time is different

■ In particular, we want it to automatically free memory :)
● Until relatively recently (Java), these techniques were not 

popular outside the Lisp family of languages
○ Just like static type safety used to be unpopular…
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● When an object that takes memory space is created, unused 
space is automatically allocated
○ In Cool, new objects are created by new X

● After a while there is no more unused space
● Some space is occupied by objects that will never be used again 

(= dead objects?)
● This space can be freed to be reused later
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Dead Again?

● How can we tell whether an object will “never be used again”?
○ In general it is impossible (undecidable) to tell (cf. liveness) 
○ We will have to use a heuristic to find many (not all) objects 

that will never be used again
● Observation: a program can use only the objects that it can find.
● For example:

let x : A <- new A in { x <- y; ... }

● After x <- y there is no way to access the newly allocated 
object
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● Definition: An object x is reachable if and only if:
○ A local variable (or register) contains a pointer to x, or
○ Another reachable object y contains a pointer to x

■ (Note that self is a local variable in Cool)
● You can find all reachable objects by starting from local variables 

and following all the pointers (“transitive”)
● An unreachable object can never be referred to by 

the program
○ Such objects are called garbage
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● Consider the program:
x <- new Ant;
y <- new Bat;
x <- y;
if alwaysTrue() then x <- new Cow else x.eat() fi

● After x <- y (assuming y becomes dead there):
○ The Ant object is not reachable anymore
○ The Bat object is reachable (through x)
○ Thus the Bat is not garbage and is not collected 
○ But the Bat object is never going to be used
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● Recall that at run-time, a Cool interpreter has two mappings:
○ Environment E maps variable identifiers to locations
○ Store S maps locations to values

● Proposed Cool garbage collector algorithm:
○ for each location l ∈ domain(S) 

■ let can_reach = false
■ for each (v, l
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) ∈ E

● if l = l
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● for each l
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○ if l = l
3

 then can_reach = true
■ if not can_reach then reclaim_location(l)



Garbage Analysis

● Could we use this proposed Cooler Garbage Collector in 
real life?



Garbage Analysis

● Could we use this proposed Cooler Garbage Collector in 
real life?
○ How long would it take?
○ How much space would it take?
○ Are we forgetting anything?



Garbage Analysis

● Could we use this proposed Cooler Garbage Collector in 
real life?
○ How long would it take?
○ How much space would it take?
○ Are we forgetting anything?

■ Hint: Yes. It's still wrong
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Tracing Reachable Values

● In Cool, local variables are easy to find:
○ Use the environment mapping E

■ and one object may point to other objects, etc.
● The stack is more complex:

○ each stack frame (activation record) contains:
■ method parameters! (which are other objects…)

● If we know the layout of a stack frame we can find the pointers 
(objects) in it

Reachability can be tricky!
● Many things may look 

legitimate and reachable 
but will turn out not to be

● How can we figure this 
out systematically?
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A Simple Example

● Start tracing from local vars and the stack
○ They are called the roots

● Note that B and D are not reachable from other local vars or the 
stack
○ Thus we can reuse their storage when they go out of scope

A B C D E

frame 1 frame 2

local 
variables

stack
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Elements of Garbage Collection

● Every garbage collection scheme has the following steps
○ Allocate space as needed for new objects 
○ When space runs out:

■ Compute what objects might be used again
● generally by tracing objects reachable from a set of 

roots
■ Free space used by objects not found in the previous step

● Some strategies perform garbage collection before the space 
actually runs out
○ Why might this be useful? 

■ Hint: will we need any space to run our garbage collector?

After trivia, we will see three 
specific garbage collection 
algorithms:
● mark and sweep
● stop and copy
● reference counting



Trivia Break: Music Theory

This musical symbol (examples highlighted in blue below) indicates 
which notes are represented by the lines and spaces on a musical 
staff. Its position on a staff assigns a particular pitch to one of the five 
lines or four spaces, which defines the pitches on the remaining lines 
and spaces. The modern symbols derive from the medieval practice of 
annotating the reference line of a staff with the name of the note it 
was intended to bear; over time the shapes of these letters became 
stylised, leading to their current versions.



Trivia Break: Programming Languages

This general-purpose high-level programming language supports 
multiple paradigms. Its features include automatic memory 
management, a strong type system, and good support for 
internationalization and portability. Its creators originally released it 
in 2000 as a closed-source language, aligning with their business 
goals at the time. However, in the decades since, the company 
responsible for the language has changed its attitude towards 
open-source, and in 2014 the open-source Roslyn compiler for this 
language was released; it has been the primary compiler for the 
language since. The language is famously used in game development 
(e.g., it is the default scripting language in the Unity game engine).
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● Our first garbage collection algorithm
● When memory runs out, GC executes two phases:

○ the mark phase: traces reachable objects 
○ the sweep phase: collects garbage objects

● Every object has an extra bit: the mark bit
○ reserved for memory management
○ initially the mark bit is 0
○ set to 1 for the reachable objects in the mark phase

● In the sweep phase, free all objects whose mark bit is still 0
○ creating a free list of garbage that can be reused
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The Mark Phase: Algorithm

let todo = { all roots }  (* worklist *) 
while todo is non-empty ; do

pick v ∈ todo
todo <- todo - { v }
if mark(v) = 0 then (* v is unmarked so far *)

mark(v) <- 1
let v

1
, ..., v

n
 be the pointers contained in v

todo <- todo U {v
1

, ..., v
n
} 

fi
od
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The Sweep Phase

● The sweep phase scans the entire heap looking 
for objects with mark bit 0
○ these objects have not been visited in the 

mark phase
○ and so they are garbage

● Any such object is added to the free list
● The objects with a mark bit of 1 have their mark 

bit reset to 0
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The Sweep Phase: Algorithm

/* sizeof(p) is size of block starting at p */
p <- bottom of heap 
while p < top of heap do

if mark(p) = 1 then 
mark(p) <- 0

else
add block p...(p+sizeof(p)-1) to freelist 

fi
p <- p + sizeof(p) 

od
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Mark and Sweep: Analysis

● While conceptually simple, this algorithm has a number of 
tricky details
○ this is typical of GC algorithms

● There is a serious problem with the mark phase:
○ it is invoked when we are out of space
○ yet it needs space to construct the todo list

■ the size of the todo list is unbounded, so we cannot 
reserve space for it a priori
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Mark and Sweep: Details

● The todo list is used as an auxiliary data structure to perform 
the reachability analysis

● There is a trick that allows the auxiliary data to be stored in the 
objects themselves
○ pointer reversal: when a pointer is followed it is reversed to 

point to its parent
● Similarly, the free list is stored in the free objects themselves
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Mark and Sweep: Evaluation

● Space for each new object is allocated from the free list
○ a block large enough is picked
○ an area of the necessary size is allocated from it 

■ the leftover is put back in the free list
● Disadvantage: mark and sweep can fragment memory

○ why is this a problem?
● Advantage: objects are not moved during GC

○ no need to update the pointers to objects
○ works for languages like C and C++ where it’s difficult to 

distinguish pointers from data (more on this later)
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Another Technique: Stop and Copy

● Memory is organized into two areas:
○ Old space: used for allocation
○ New space: used as a reserve for the GC

● The heap pointer points to the next free word in the old space
○ Allocation just advances the heap pointer

old space new space

heap pointer
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Stop and Copy: Intuition

● Starts when the old space is full
● Copies all reachable objects from old 

space into new space
○ garbage is left behind
○ after the copy phase the new space 

uses less space than the old one before 
the collection

● After the copy the roles of the old and new 
spaces are reversed and the program 
resumes
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Stop and Copy: Implementation

● We need to find all the reachable objects
○ Just as in mark and sweep

● As we find a reachable object we copy it into the new space
○ And we have to fix ALL pointers pointing to it! 

● As we copy an object we store in the old copy a forwarding 
pointer to the new copy
○ When we later reach an object with a forwarding pointer, 

we know it was already copied
○ How can we identify forwarding pointers?

● We also still have the issue of how to implement the traversal 
without using extra space
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● Both problems can be solved via the following trick:
○ partition the new space into three contiguous regions:
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Stop and Copy: Detailed Example

● Step 1: Copy the objects pointed by roots and set forwarding 
pointers (dotted arrow)



● Step 2: Follow the pointer in the next unscanned object (A)
○ copy the pointed objects (just C in this case)
○ fix the pointer in A 
○ set forwarding pointer

Stop and Copy: Detailed Example



● Step 3: Follow the pointer in the next unscanned object (C)
○ copy the pointed objects (F in this case)

Stop and Copy: Detailed Example



● Step 4: Follow the pointer in the next unscanned object (F)
○ the pointed object (A) was already copied. Set the pointer same 

as the forwarding pointer

Stop and Copy: Detailed Example



● Step 5: Since scan caught up with alloc, we are done
● Now, we swap the role of the two spaces and then resume the 

program

Stop and Copy: Detailed Example
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Stop and Copy: Algorithm
while scan != alloc do

let O be the object at the scan pointer
for each pointer p contained in O do

find O’ that p points to
if O’ is without a forwarding pointer

copy O’ to new space (update alloc pointer)
set 1st word of old O’ to point to the new copy
change p to point to the new copy of O’

else
set p in O equal to the forwarding pointer

fi
rof
increment scan pointer to the next object

od
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Stop and Copy: Details

● As with mark and sweep, we must be able to tell how large an 
object is when we scan it
○ Is this a problem in Cool?

● We also need to know where the pointers are inside the object
○ How hard is this?

● We must also copy any objects pointed to by the stack and update 
pointers in the stack
○ This can be an expensive operation in practice…
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Why Doesn’t C Allow Copying?

● Garbage collection relies on being able to find all reachable objects
○ And it needs to find all pointers in an object

● In languages like C or C++ it is impossible to identify the contents 
of objects in memory
○ e.g., how can you tell that a sequence of two memory words is a 

list cell (with data and next fields) or a binary tree node (with a 
left and right fields)?

○ Thus we cannot tell where all the pointers are
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● But we can be conservative:
○ If a memory word “looks like” a pointer, it is considered to be a 

pointer
■ e.g., if it is aligned (what does this mean?)
■ it must point to a valid address in the data segment

○ All such pointers are followed and we overestimate the 
reachable objects

● But we still cannot move objects because we cannot update 
pointers to them
○ What if what we thought to be a pointer is actually an account 

number?

Thus we cannot use stop-and-copy 
GC for languages with raw pointer 
fields that are indistinguishable 
from data at run time



Reference Counting



Reference Counting

● Rather that wait for memory to be exhausted, try to collect an 
object when there are no more pointers to it



Reference Counting

● Rather that wait for memory to be exhausted, try to collect an 
object when there are no more pointers to it

● Store in each object the number of pointers to that object



Reference Counting

● Rather that wait for memory to be exhausted, try to collect an 
object when there are no more pointers to it

● Store in each object the number of pointers to that object
○ This is the reference count



Reference Counting

● Rather that wait for memory to be exhausted, try to collect an 
object when there are no more pointers to it

● Store in each object the number of pointers to that object
○ This is the reference count

● Each assignment operation has to manipulate the reference 
count



Reference Counting

● Rather that wait for memory to be exhausted, try to collect an 
object when there are no more pointers to it

● Store in each object the number of pointers to that object
○ This is the reference count

● Each assignment operation has to manipulate the reference 
count
○ How expensive is that?
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Reference Counting: Implementation

● new returns an object with a reference count of 1
● If x points to an object then let rc(x) refer to the object’s 

reference count
● Code generated for every assignment x <- y must be changed: 

rc(y) <- rc(y) + 1
rc(x) <- rc(x) - 1
if (rc(x) == 0) then mark x as free
x <- y

● (That’s basically it!)
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Reference Counting: Evaluation

● Advantages:
○ Easy to implement
○ Collects garbage incrementally without large pauses in 

the execution
■ Why would we care about that?

● Disadvantages:
○ Manipulating reference counts at each assignment is 

very slow
○ Cannot collect circular structures
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Garbage Collection: Evaluation

● Automatic memory management avoids some serious storage 
bugs

● But it takes away control from the programmer
○ e.g., layout of data in memory 
○ e.g., when is memory deallocated

● Most garbage collection implementations stop the execution 
during collection
○ not acceptable in real-time applications
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Garbage Collection: Other Approaches

● Concurrent: allow the program to run while the collection is 
happening

● Generational: do not scan long-lived objects at every collection 
(infant mortality)
○ This approach, in particular, has seen wide adoption in 

practice (Java)
● Parallel: several collectors working in parallel 
● Real-Time / Incremental: no long pauses
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Garbage Collection: IRL

● Python uses Reference Counting
○ Because of “extension modules”, they deem it too difficult to 

determine the root set
○ Has a special separate cycle detector

● Perl does Reference Counting + cycles
● Ruby does Mark and Sweep
● OCaml does (generational) Stop and Copy
● Java does (generational) Stop and Copy
● Node.js does (generational) Stop and Copy
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Automatic Memory Management: Summary
● An automatic memory management system deallocates objects 

when they are no longer used and reclaims their storage space.
● We must be conservative and only free objects that won’t be used 

later.
● Garbage collection scans the heap from a set of roots to find 

reachable objects. We saw three algorithms:
○ Mark and Sweep uses a per-object mark bit to track which 

objects are reachable.
○ Stop and Copy has low overhead but stalls the program and 

requires language support
○ Reference Counting stores the number of pointers to an object 

with that object and frees it when that count reaches zero



Course Announcements

● As some of you have noticed, the PA4 leaderboard results are 
subject to timing variance
○ In particular, sometimes you “get lucky” and your compiler’s 

code appears to be much, much faster than the reference
○ There’s not much I can do about this, unfortunately.
○ We will run each final submission several times and take the 

median Q score (not the best), so if you see a big speedup 
without doing anything, you should assume it is ephemeral

● PA4c1 is due on Monday
● I will not hold office hours next Wednesday


