
Functional Programming (2/2)
and Intro to Cool

Martin Kellogg

Today’s Agenda

● Finish introduction to functional programming
○ polymorphism
○ higher-order functions

■ fold
■ sorting

● Introduction to Cool
○ syntax
○ objects
○ methods
○ types

Polymorphism
● Functions and type inference in ML are polymorphic

Polymorphism
● Functions and type inference in ML are polymorphic

○ “Polymorphic” means they operate on more than one type

Polymorphism
● Functions and type inference in ML are polymorphic

○ “Polymorphic” means they operate on more than one type

let rec length x = match x with
 | [] -> 0
 | hd :: tl -> 1 + length tl

Polymorphism
● Functions and type inference in ML are polymorphic

○ “Polymorphic” means they operate on more than one type

let rec length x = match x with
 | [] -> 0
 | hd :: tl -> 1 + length tl

val length : α list -> int

Polymorphism
● Functions and type inference in ML are polymorphic

○ “Polymorphic” means they operate on more than one type

let rec length x = match x with
 | [] -> 0
 | hd :: tl -> 1 + length tl

val length : α list -> int

Recall that α means
“any one type”

Polymorphism
● Functions and type inference in ML are polymorphic

○ “Polymorphic” means they operate on more than one type

let rec length x = match x with
 | [] -> 0
 | hd :: tl -> 1 + length tl

val length : α list -> int

length [1;2;3] = 3

Recall that α means
“any one type”

Polymorphism
● Functions and type inference in ML are polymorphic

○ “Polymorphic” means they operate on more than one type

let rec length x = match x with
 | [] -> 0
 | hd :: tl -> 1 + length tl

val length : α list -> int

length [1;2;3] = 3
length [“algol”; ”smalltalk”; ”ml”] = 3

Recall that α means
“any one type”

Polymorphism
● Functions and type inference in ML are polymorphic

○ “Polymorphic” means they operate on more than one type

let rec length x = match x with
 | [] -> 0
 | hd :: tl -> 1 + length tl

val length : α list -> int

length [1;2;3] = 3
length [“algol”; ”smalltalk”; ”ml”] = 3
length [1 ; “algol”] = ?

Recall that α means
“any one type”

Recall that α means
“any one type”

Polymorphism
● Functions and type inference in ML are polymorphic

○ “Polymorphic” means they operate on more than one type

let rec length x = match x with
 | [] -> 0
 | hd :: tl -> 1 + length tl

val length : α list -> int

length [1;2;3] = 3
length [“algol”; ”smalltalk”; ”ml”] = 3
length [1 ; “algol”] = ?

Higher-order functions

● Functions are first-class values

Higher-order functions

● Functions are first-class values
○ Can be used whenever a value is expected (i.e., as an expression)

Higher-order functions

● Functions are first-class values
○ Can be used whenever a value is expected (i.e., as an expression)
○ Notably, can be passed around

Higher-order functions

● Functions are first-class values
○ Can be used whenever a value is expected (i.e., as an expression)
○ Notably, can be passed around
○ Closure captures the environment

Higher-order functions

● Functions are first-class values
○ Can be used whenever a value is expected (i.e., as an expression)
○ Notably, can be passed around
○ Closure captures the environment

let rec map f lst = match lst with
 | [] -> []
 | hd :: tl -> f hd :: map f tl

Higher-order functions

● Functions are first-class values
○ Can be used whenever a value is expected (i.e., as an expression)
○ Notably, can be passed around
○ Closure captures the environment

let rec map f lst = match lst with
 | [] -> []
 | hd :: tl -> f hd :: map f tl f is itself a

function!

Higher-order functions

● Functions are first-class values
○ Can be used whenever a value is expected (i.e., as an expression)
○ Notably, can be passed around
○ Closure captures the environment

let rec map f lst = match lst with
 | [] -> []
 | hd :: tl -> f hd :: map f tl
val map : ?

Higher-order functions

● Functions are first-class values
○ Can be used whenever a value is expected (i.e., as an expression)
○ Notably, can be passed around
○ Closure captures the environment

let rec map f lst = match lst with
 | [] -> []
 | hd :: tl -> f hd :: map f tl
val map : (𝝰 -> 𝝱) -> ?

Higher-order functions

● Functions are first-class values
○ Can be used whenever a value is expected (i.e., as an expression)
○ Notably, can be passed around
○ Closure captures the environment

let rec map f lst = match lst with
 | [] -> []
 | hd :: tl -> f hd :: map f tl
val map : (𝝰 -> 𝝱) -> 𝝰 list -> ?

Higher-order functions

● Functions are first-class values
○ Can be used whenever a value is expected (i.e., as an expression)
○ Notably, can be passed around
○ Closure captures the environment

let rec map f lst = match lst with
 | [] -> []
 | hd :: tl -> f hd :: map f tl
val map : (𝝰 -> 𝝱) -> 𝝰 list -> 𝝱 list

Higher-order functions

● Functions are first-class values
○ Can be used whenever a value is expected (i.e., as an expression)
○ Notably, can be passed around
○ Closure captures the environment

let rec map f lst = match lst with
 | [] -> []
 | hd :: tl -> f hd :: map f tl
val map : (𝝰 -> 𝝱) -> 𝝰 list -> 𝝱 list
let offset = 10 in
let myfun x = x + offset in
val myfun : ?

Higher-order functions

● Functions are first-class values
○ Can be used whenever a value is expected (i.e., as an expression)
○ Notably, can be passed around
○ Closure captures the environment

let rec map f lst = match lst with
 | [] -> []
 | hd :: tl -> f hd :: map f tl
val map : (𝝰 -> 𝝱) -> 𝝰 list -> 𝝱 list
let offset = 10 in
let myfun x = x + offset in
val myfun : int -> int

Higher-order functions

● Functions are first-class values
○ Can be used whenever a value is expected (i.e., as an expression)
○ Notably, can be passed around
○ Closure captures the environment

let rec map f lst = match lst with
 | [] -> []
 | hd :: tl -> f hd :: map f tl
val map : (𝝰 -> 𝝱) -> 𝝰 list -> 𝝱 list
let offset = 10 in
let myfun x = x + offset in
val myfun : int -> int
map myfun [1;8;22] = ?

Higher-order functions

● Functions are first-class values
○ Can be used whenever a value is expected (i.e., as an expression)
○ Notably, can be passed around
○ Closure captures the environment

let rec map f lst = match lst with
 | [] -> []
 | hd :: tl -> f hd :: map f tl
val map : (𝝰 -> 𝝱) -> 𝝰 list -> 𝝱 list
let offset = 10 in
let myfun x = x + offset in
val myfun : int -> int
map myfun [1;8;22] = [11;18;32]

Higher-order functions

● Functions are first-class values
○ Can be used whenever a value is expected (i.e., as an expression)
○ Notably, can be passed around
○ Closure captures the environment

let rec map f lst = match lst with
 | [] -> []
 | hd :: tl -> f hd :: map f tl
val map : (𝝰 -> 𝝱) -> 𝝰 list -> 𝝱 list
let offset = 10 in
let myfun x = x + offset in
val myfun : int -> int
map myfun [1;8;22] = [11;18;32]

Extremely powerful
programming technique:
● general iterators
● implement

abstraction

The Story of Fold

● We’ve seen length and map
● We can also imagine:

The Story of Fold

● We’ve seen length and map
● We can also imagine:

○ sum [1; 5; 8] = 14

The Story of Fold

● We’ve seen length and map
● We can also imagine:

○ sum [1; 5; 8] = 14
○ product [1; 5; 8] = 40

The Story of Fold

● We’ve seen length and map
● We can also imagine:

○ sum [1; 5; 8] = 14
○ product [1; 5; 8] = 40
○ and [true; true; false] = false

The Story of Fold

● We’ve seen length and map
● We can also imagine:

○ sum [1; 5; 8] = 14
○ product [1; 5; 8] = 40
○ and [true; true; false] = false
○ or [true; true; false] = true

The Story of Fold

● We’ve seen length and map
● We can also imagine:

○ sum [1; 5; 8] = 14
○ product [1; 5; 8] = 40
○ and [true; true; false] = false
○ or [true; true; false] = true
○ filter (fun x -> x > 4) [1; 5; 8] = [5; 8]

The Story of Fold

● We’ve seen length and map
● We can also imagine:

○ sum [1; 5; 8] = 14
○ product [1; 5; 8] = 40
○ and [true; true; false] = false
○ or [true; true; false] = true
○ filter (fun x -> x > 4) [1; 5; 8] = [5; 8]
○ reverse [1; 5; 8] = [8; 5; 1]

The Story of Fold

● We’ve seen length and map
● We can also imagine:

○ sum [1; 5; 8] = 14
○ product [1; 5; 8] = 40
○ and [true; true; false] = false
○ or [true; true; false] = true
○ filter (fun x -> x > 4) [1; 5; 8] = [5; 8]
○ reverse [1; 5; 8] = [8; 5; 1]
○ mem 5 [1; 5; 8] = true

The Story of Fold

● We’ve seen length and map
● We can also imagine:

○ sum [1; 5; 8] = 14
○ product [1; 5; 8] = 40
○ and [true; true; false] = false
○ or [true; true; false] = true
○ filter (fun x -> x > 4) [1; 5; 8] = [5; 8]
○ reverse [1; 5; 8] = [8; 5; 1]
○ mem 5 [1; 5; 8] = true

How can we build
all of these?

The Story of Fold

● The fold operator comes from recursion theory (Kleene, 1952):

let rec fold f acc lst = match lst with
| [] -> acc
| hd :: tl -> fold f (f acc hd) tl

The Story of Fold

● The fold operator comes from recursion theory (Kleene, 1952):

let rec fold f acc lst = match lst with
| [] -> acc
| hd :: tl -> fold f (f acc hd) tl

val fold : ?

The Story of Fold

● The fold operator comes from recursion theory (Kleene, 1952):

let rec fold f acc lst = match lst with
| [] -> acc
| hd :: tl -> fold f (f acc hd) tl

val fold : (𝝰 -> 𝝱 -> 𝝰) -> 𝝰 -> 𝝱 list -> 𝝰

The Story of Fold

● The fold operator comes from recursion theory (Kleene, 1952):

let rec fold f acc lst = match lst with
| [] -> acc
| hd :: tl -> fold f (f acc hd) tl

val fold : (𝝰 -> 𝝱 -> 𝝰) -> 𝝰 -> 𝝱 list -> 𝝰
 f acc lst (fold f acc lst)

The Story of Fold

● The fold operator comes from recursion theory (Kleene, 1952):

let rec fold f acc lst = match lst with
| [] -> acc
| hd :: tl -> fold f (f acc hd) tl

val fold : (𝝰 -> 𝝱 -> 𝝰) -> 𝝰 -> 𝝱 list -> 𝝰
 f acc lst (fold f acc lst)

Note: acc type and return
type are the same!

The Story of Fold

● The fold operator comes from recursion theory (Kleene, 1952):

let rec fold f acc lst = match lst with
| [] -> acc
| hd :: tl -> fold f (f acc hd) tl

val fold : (𝝰 -> 𝝱 -> 𝝰) -> 𝝰 -> 𝝱 list -> 𝝰

● on the whiteboard, this example (f is +):

 f acc lst (fold f acc lst)

Let’s build things out of fold

● length lst = fold (fun acc elt -> ???) ? lst

Let’s build things out of fold

● length lst = fold (fun acc elt -> acc + 1) 0 lst

Let’s build things out of fold

● length lst = fold (fun acc elt -> acc + 1) 0 lst
● sum lst = fold (fun acc elt -> ???) ? lst

Let’s build things out of fold

● length lst = fold (fun acc elt -> acc + 1) 0 lst
● sum lst = fold (fun acc elt -> acc + elt) 0 lst

Let’s build things out of fold

● length lst = fold (fun acc elt -> acc + 1) 0 lst
● sum lst = fold (fun acc elt -> acc + elt) 0 lst
● product lst = fold (fun acc elt -> ???) ? lst

Let’s build things out of fold

● length lst = fold (fun acc elt -> acc + 1) 0 lst
● sum lst = fold (fun acc elt -> acc + elt) 0 lst
● product lst = fold (fun acc elt -> acc * elt) 1 lst

Let’s build things out of fold

● length lst = fold (fun acc elt -> acc + 1) 0 lst
● sum lst = fold (fun acc elt -> acc + elt) 0 lst
● product lst = fold (fun acc elt -> acc * elt) 1 lst
● and lst = fold (fun acc elt -> ???) ? lst

Let’s build things out of fold

● length lst = fold (fun acc elt -> acc + 1) 0 lst
● sum lst = fold (fun acc elt -> acc + elt) 0 lst
● product lst = fold (fun acc elt -> acc * elt) 1 lst
● and lst = fold (fun acc elt -> acc & elt) true lst

Let’s build things out of fold

● length lst = fold (fun acc elt -> acc + 1) 0 lst
● sum lst = fold (fun acc elt -> acc + elt) 0 lst
● product lst = fold (fun acc elt -> acc * elt) 1 lst
● and lst = fold (fun acc elt -> acc & elt) true lst

● think you can do or on your own?

Let’s build things out of fold

● length lst = fold (fun acc elt -> acc + 1) 0 lst
● sum lst = fold (fun acc elt -> acc + elt) 0 lst
● product lst = fold (fun acc elt -> acc * elt) 1 lst
● and lst = fold (fun acc elt -> acc & elt) true lst

● think you can do or on your own?
○ what about reverse?

Let’s build things out of fold, part 2

● reverse lst = fold (fun acc elt -> ???) ? lst

Let’s build things out of fold, part 2

● reverse lst = fold (fun acc elt -> acc @ [e]) [] lst

Let’s build things out of fold, part 2

● reverse lst = fold (fun acc elt -> acc @ [e]) [] lst
○ note types: (acc : 𝝰 list) (e : 𝝰)

Let’s build things out of fold, part 2

● reverse lst = fold (fun acc elt -> acc @ [e]) [] lst
○ note types: (acc : 𝝰 list) (e : 𝝰)

● filter keep_it lst = fold (fun acc elt -> ???) ? lst

Let’s build things out of fold, part 2

● reverse lst = fold (fun acc elt -> acc @ [e]) [] lst
○ note types: (acc : 𝝰 list) (e : 𝝰)

● filter keep_it lst = fold (fun acc elt -> if keep_it elt
then elt :: acc
else acc) [] lst

Let’s build things out of fold, part 2

● reverse lst = fold (fun acc elt -> acc @ [e]) [] lst
○ note types: (acc : 𝝰 list) (e : 𝝰)

● filter keep_it lst = fold (fun acc elt -> if keep_it elt
then elt :: acc
else acc) [] lst

● filter wanted lst = fold (fun acc elt -> ???) ? lst

Let’s build things out of fold, part 2

● reverse lst = fold (fun acc elt -> acc @ [e]) [] lst
○ note types: (acc : 𝝰 list) (e : 𝝰)

● filter keep_it lst = fold (fun acc elt -> if keep_it elt
then elt :: acc
else acc) [] lst

● filter wanted lst = fold (fun acc elt -> acc || wanted = elt) false lst

Let’s build things out of fold, part 2

● reverse lst = fold (fun acc elt -> acc @ [e]) [] lst
○ note types: (acc : 𝝰 list) (e : 𝝰)

● filter keep_it lst = fold (fun acc elt -> if keep_it elt
then elt :: acc
else acc) [] lst

● filter wanted lst = fold (fun acc elt -> acc || wanted = elt) false lst
○ note types: (acc : bool) (e : 𝝰)

Let’s build things out of fold, part 2

● reverse lst = fold (fun acc elt -> acc @ [e]) [] lst
○ note types: (acc : 𝝰 list) (e : 𝝰)

● filter keep_it lst = fold (fun acc elt -> if keep_it elt
then elt :: acc
else acc) [] lst

● filter wanted lst = fold (fun acc elt -> acc || wanted = elt) false lst
○ note types: (acc : bool) (e : 𝝰)

● Could we do map?
○ Recall: map (fun x -> x +10) [1;2] = [11;12]

Let’s build things out of fold, part 2

● reverse lst = fold (fun acc elt -> acc @ [e]) [] lst
○ note types: (acc : 𝝰 list) (e : 𝝰)

● filter keep_it lst = fold (fun acc elt -> if keep_it elt
then elt :: acc
else acc) [] lst

● filter wanted lst = fold (fun acc elt -> acc || wanted = elt) false lst
○ note types: (acc : bool) (e : 𝝰)

● Could we do map?
○ Recall: map (fun x -> x +10) [1;2] = [11;12]
○ Let’s do it together…

Let’s build things out of fold, part 3 (map)

let map myfun lst =
fold (fun acc elt -> (myfun ??? :: acc) ? lst

Let’s build things out of fold, part 3 (map)

let map myfun lst =
fold (fun acc elt -> (myfun elt) :: acc) [] lst

Let’s build things out of fold, part 3 (map)

let map myfun lst =
fold (fun acc elt -> (myfun elt) :: acc) [] lst

● Types of:
○ myfun : 𝝰 -> 𝝱
○ lst : 𝝰 list
○ acc : 𝝱 list
○ elt : 𝝰

Let’s build things out of fold, part 3 (map)

let map myfun lst =
fold (fun acc elt -> (myfun elt) :: acc) [] lst

● Types of:
○ myfun : 𝝰 -> 𝝱
○ lst : 𝝰 list
○ acc : 𝝱 list
○ elt : 𝝰

● Could we do sort?

Sorting examples

let langs = [“fortran”; “algol”; “c”] in
● sort (fun a b -> ???) langs = [“algol”; “c”; “fortran”]

Sorting examples

let langs = [“fortran”; “algol”; “c”] in
● sort (fun a b -> a < b) langs = [“algol”; “c”; “fortran”]

Sorting examples

let langs = [“fortran”; “algol”; “c”] in
● sort (fun a b -> a < b) langs = [“algol”; “c”; “fortran”]
● sort (fun a b -> ???) langs = [“fortran”; “c”; “algol”]

Sorting examples

let langs = [“fortran”; “algol”; “c”] in
● sort (fun a b -> a < b) langs = [“algol”; “c”; “fortran”]
● sort (fun a b -> a > b) langs = [“fortran”; “c”; “algol”]

Sorting examples

let langs = [“fortran”; “algol”; “c”] in
● sort (fun a b -> a < b) langs = [“algol”; “c”; “fortran”]
● sort (fun a b -> a > b) langs = [“fortran”; “c”; “algol”]
● sort (fun a b -> ???) langs = [“c”; “algol”; “fortran”]

Sorting examples

let langs = [“fortran”; “algol”; “c”] in
● sort (fun a b -> a < b) langs = [“algol”; “c”; “fortran”]
● sort (fun a b -> a > b) langs = [“fortran”; “c”; “algol”]
● sort (fun a b -> strlen a < strlen b) langs = [“c”; “algol”; “fortran”]

Sorting examples

let langs = [“fortran”; “algol”; “c”] in
● sort (fun a b -> a < b) langs = [“algol”; “c”; “fortran”]
● sort (fun a b -> a > b) langs = [“fortran”; “c”; “algol”]
● sort (fun a b -> strlen a < strlen b) langs = [“c”; “algol”; “fortran”]

● Recall Java’s Comparator interface
○ in this functional style, our implementations are much simpler!

Partial Application and Currying

let myadd x y = x + y
val myadd : int -> int -> int
myadd 3 5 = 8

Partial Application and Currying

let myadd x y = x + y
val myadd : int -> int -> int
myadd 3 5 = 8
let addtwo = myadd 2

Partial Application and Currying

let myadd x y = x + y
val myadd : int -> int -> int
myadd 3 5 = 8
let addtwo = myadd 2

● How do we know what this means? We use referential transparency!
Basically, just substitute it in.

Partial Application and Currying

let myadd x y = x + y
val myadd : int -> int -> int
myadd 3 5 = 8
let addtwo = myadd 2

● How do we know what this means? We use referential transparency!
Basically, just substitute it in.

val addtwo : int -> int
addtwo 77 = 79

Partial Application and Currying

let myadd x y = x + y
val myadd : int -> int -> int
myadd 3 5 = 8
let addtwo = myadd 2

● How do we know what this means? We use referential transparency!
Basically, just substitute it in.

val addtwo : int -> int
addtwo 77 = 79

● called Currying: “if you fix some arguments, you get a function of the
remaining arguments” (remember Monday’s trivia question?)

Trivia Break: Current Events

This Chinese artificial intelligence company released a chatbot using
its latest R1 model on January 10th. By January 27th, it had
surpassed ChatGPT as the most-downloaded free app on the iOS
App Store in the United States. The R1 model is claimed to have been
trained at small fraction of the cost of training other state-of-the-art
foundation models, like GPT-4.

Trivia Break: History

The New York Times mentioned this thing in 279 articles between
October 6, 1957, and October 31, 1957 (more than 11 articles per
day). Its launch created a crisis reaction in the United States that
kicked of the “Space Race” that culminated in the Apollo moon
landings in the 1960s and 1970s. After its first orbit, the Telegraph
Agency of the Soviet Union (TASS) transmitted: "As result of great,
intense work of scientific institutes and design bureaus the first
artificial Earth satellite has been built."

Today’s Agenda

● Finish introduction to functional programming
○ polymorphism
○ higher-order functions

■ fold
■ sorting

● Introduction to Cool
○ syntax
○ objects
○ methods
○ types

Cool Overview

● Recall Cool = “Classroom Object-Oriented Language”
○ Designed to be implementable in one semester

Cool Overview

● Recall Cool = “Classroom Object-Oriented Language”
○ Designed to be implementable in one semester

● Give a taste of implementing modern features, such as:
○ Abstraction
○ Static Typing
○ Inheritance
○ Dynamic Dispatch
○ And more ...

Cool Overview

● Recall Cool = “Classroom Object-Oriented Language”
○ Designed to be implementable in one semester

● Give a taste of implementing modern features, such as:
○ Abstraction
○ Static Typing
○ Inheritance
○ Dynamic Dispatch
○ And more ...

● But many “grungy” things are left out

A Simple Cool Example

class Point {
x : Int <- 1;
y : Int; (* use default value *)

};

A Simple Cool Example

class Point {
x : Int <- 1;
y : Int; (* use default value *)

};

● Cool programs are sets of class definitions

○ A special Main class with a special method main()

○ Classes are like those in Java or Python or C++

A Simple Cool Example

class Point {
x : Int <- 1;
y : Int; (* use default value *)

};

● Cool programs are sets of class definitions

○ A special Main class with a special method main()

○ Classes are like those in Java or Python or C++

● class = a collection of fields and methods

A Simple Cool Example

class Point {
x : Int <- 1;
y : Int; (* use default value *)

};

● Cool programs are sets of class definitions

○ A special Main class with a special method main()

○ Classes are like those in Java or Python or C++

● class = a collection of fields and methods

● Instances of a class are objects

Cool Objects

class Point {
x : Int <- 1;
y : Int; (* use default value *)

};

● The expression new Point creates a new object of class Point

Cool Objects

class Point {
x : Int <- 1;
y : Int; (* use default value *)

};

● The expression new Point creates a new object of class Point
● An object can be thought of as a record with a slot for each

attribute (= field)
x y

1 0

Cool Methods

class Point {
x : Int <- 1;
y : Int; (* use default value *)

 movePoint(newx : Int, newy : Int) : Point {
 { x <- newx;

 y <- newy;
 self;
 } -- close block expression
 }; -- close method
 }; -- close class

A class can also define
methods for manipulating
its attributes

Cool Methods

class Point {
x : Int <- 1;
y : Int; (* use default value *)

 movePoint(newx : Int, newy : Int) : Point {
 { x <- newx;

 y <- newy;
 self;
 } -- close block expression
 }; -- close method
 }; -- close class

Methods can refer to the
current object using the
self keyword

Cool Methods

class Point {
x : Int <- 1;
y : Int; (* use default value *)

 movePoint(newx : Int, newy : Int) : Point {
 { x <- newx;

 y <- newy;
 self;
 } -- close block expression
 }; -- close method
 }; -- close class

Aside: yes, the placement
of semicolons is arbitrary.
Still, don’t get it wrong.

Cool: Information Hiding

● Cool’s methods are global: they can be accessed from any other
part of the program
○ like public in Java

Cool: Information Hiding

● Cool’s methods are global: they can be accessed from any other
part of the program
○ like public in Java

● Attributes, on the other hand, are local: they can only be accessed
by that class’ methods

Cool: Information Hiding

● Cool’s methods are global: they can be accessed from any other
part of the program
○ like public in Java

● Attributes, on the other hand, are local: they can only be accessed
by that class’ methods
○ conveniently, this means there is no dereference syntax

■ e.g., you can’t write f.x in Cool!

Cool: Information Hiding

● Cool’s methods are global: they can be accessed from any other
part of the program
○ like public in Java

● Attributes, on the other hand, are local: they can only be accessed
by that class’ methods
○ conveniently, this means there is no dereference syntax

■ e.g., you can’t write f.x in Cool!
○ instead, all attributes are accessed directly by name

■ simplifies reasoning about scopes (we’ll come back to it)

Cool: Methods and Object Layout

● Each object knows how to access the code of its methods

●

Cool: Methods and Object Layout

● Each object knows how to access the code of its methods
● As if the object contains a slot pointing to the code:

●

x y movePoint

1 0 *
(code for movePoint)

Cool: Methods and Object Layout

● Each object knows how to access the code of its methods
● As if the object contains a slot pointing to the code:

●
● This is a simplification: in reality, implementations save space by

sharing these pointers among instances of the same class:

x y movePoint

1 0 *
(code for movePoint)

x y methods

1 0 *

movePoint

setX

...

(code for movePoint)
(code for setX)

Cool: Methods and Object Layout

● Each object knows how to access the code of its methods
● As if the object contains a slot pointing to the code:

●
● This is a simplification: in reality, implementations save space by

sharing these pointers among instances of the same class:

x y movePoint

1 0 *
(code for movePoint)

x y methods

1 0 *

movePoint

setX

...

(code for movePoint)
(code for setX)

Another topic we’ll cover
in a lot more detail later!

Cool: Inheritance

● We can extend points to color points using subclassing, which gives
us a class hierarchy. E.g.,:

Cool: Inheritance

● We can extend points to color points using subclassing, which gives
us a class hierarchy. E.g.,:

class ColorPoint extends Point {
 color : Int <- 0;
 movePoint(newx:Int, newy:Int) : Point {
 { color <- 0;
 x <- newx; y <- newy;
 self;
 };
};

●

Cool: Inheritance

● We can extend points to color points using subclassing, which gives
us a class hierarchy. E.g.,:

class ColorPoint extends Point {
 color : Int <- 0;
 movePoint(newx:Int, newy:Int) : Point {
 { color <- 0;
 x <- newx; y <- newy;
 self;
 };
};

●

Can add new attributes

Cool: Inheritance

● We can extend points to color points using subclassing, which gives
us a class hierarchy. E.g.,:

class ColorPoint extends Point {
 color : Int <- 0;
 movePoint(newx:Int, newy:Int) : Point {
 { color <- 0;
 x <- newx; y <- newy;
 self;
 };
};

●

Can redefine methods
(= Java’s overriding)

Cool: Inheritance

● We can extend points to color points using subclassing, which gives
us a class hierarchy. E.g.,:

class ColorPoint extends Point {
 color : Int <- 0;
 movePoint(newx:Int, newy:Int) : Point {
 { color <- 0;
 x <- newx; y <- newy;
 self;
 };
};

●

Can still reference
attributes defined in
superclass

Cool: Types

● Every class in Cool defines a type

Cool: Types

● Every class in Cool defines a type
● Base (built-in, predefined classes):

○ Int for integers (including all integer literals)
○ Bool for booleans (including true and false)
○ String for strings (including string literals)
○ Object root of class hierarchy
○ IO for built-in input/output operations

Cool: Types

● Every class in Cool defines a type
● Base (built-in, predefined classes):

○ Int for integers (including all integer literals)
○ Bool for booleans (including true and false)
○ String for strings (including string literals)
○ Object root of class hierarchy
○ IO for built-in input/output operations

● All variables must be declared with their type

Cool: Types

● Every class in Cool defines a type
● Base (built-in, predefined classes):

○ Int for integers (including all integer literals)
○ Bool for booleans (including true and false)
○ String for strings (including string literals)
○ Object root of class hierarchy
○ IO for built-in input/output operations

● All variables must be declared with their type
○ compiler infers types for expressions (like Java or C)

Cool: Typechecking

x : Point;
x <- new ColorPoint;

Cool: Typechecking

x : Point;
x <- new ColorPoint;

● This program is well-typed iff Point is an ancestor of ColorPoint in
the type hierarchy

Cool: Typechecking

x : Point;
x <- new ColorPoint;

● This program is well-typed iff Point is an ancestor of ColorPoint in
the type hierarchy
○ And anywhere a Point is expected, we can use a ColorPoint

Cool: Typechecking

x : Point;
x <- new ColorPoint;

● This program is well-typed iff Point is an ancestor of ColorPoint in
the type hierarchy
○ And anywhere a Point is expected, we can use a ColorPoint

This is called the Liskov
Substitution Principle: “any
subclass object should be safe
to use in place of a superclass
object at run time”

Cool: Typechecking

x : Point;
x <- new ColorPoint;

● This program is well-typed iff Point is an ancestor of ColorPoint in
the type hierarchy
○ And anywhere a Point is expected, we can use a ColorPoint

● Another way of phrasing this: … is well-typed iff ColorPoint is a
subtype of Point

This is called the Liskov
Substitution Principle: “any
subclass object should be safe
to use in place of a superclass
object at run time”

Cool: Typechecking

x : Point;
x <- new ColorPoint;

● This program is well-typed iff Point is an ancestor of ColorPoint in
the type hierarchy
○ And anywhere a Point is expected, we can use a ColorPoint

● Another way of phrasing this: … is well-typed iff ColorPoint is a
subtype of Point

● Cool’s type safety theorem says that a well-typed program cannot
result in run-time type errors

This is called the Liskov
Substitution Principle: “any
subclass object should be safe
to use in place of a superclass
object at run time”

Pedantic aside: runtime vs run-time vs run time

There are three similar words that people often confuse in Computer
Science:

Pedantic aside: runtime vs run-time vs run time

There are three similar words that people often confuse in Computer
Science:
● a runtime is a computer program that provides an environment in

which to execute other programs
○ e.g., the JVM, your favorite shell

Pedantic aside: runtime vs run-time vs run time

There are three similar words that people often confuse in Computer
Science:
● a runtime is a computer program that provides an environment in

which to execute other programs
○ e.g., the JVM, your favorite shell

● run time (a noun) is either the time at which a program runs or
the amount of time it takes to execute

Pedantic aside: runtime vs run-time vs run time

There are three similar words that people often confuse in Computer
Science:
● a runtime is a computer program that provides an environment in

which to execute other programs
○ e.g., the JVM, your favorite shell

● run time (a noun) is either the time at which a program runs or
the amount of time it takes to execute

● run-time (an adjective) describes something that happens at run
time

Cool: Method Invocation + Inheritance

Cool: Method Invocation + Inheritance

● Methods are invoked via dynamic dispatch

Cool: Method Invocation + Inheritance

● Methods are invoked via dynamic dispatch
● Understanding dispatch in the presence of inheritance is a subtle

aspect of object-oriented programming.

Cool: Method Invocation + Inheritance

● Methods are invoked via dynamic dispatch
● Understanding dispatch in the presence of inheritance is a subtle

aspect of object-oriented programming. E.g.,:

p : Point;
p <- new ColorPoint;
p.movePoint(1, 2);

Cool: Method Invocation + Inheritance

● Methods are invoked via dynamic dispatch
● Understanding dispatch in the presence of inheritance is a subtle

aspect of object-oriented programming. E.g.,:

● p has static type Point

p : Point;
p <- new ColorPoint;
p.movePoint(1, 2);

Cool: Method Invocation + Inheritance

● Methods are invoked via dynamic dispatch
● Understanding dispatch in the presence of inheritance is a subtle

aspect of object-oriented programming. E.g.,:

● p has static type Point
● p has dynamic type ColorPoint

p : Point;
p <- new ColorPoint;
p.movePoint(1, 2);

Cool: Method Invocation + Inheritance

● Methods are invoked via dynamic dispatch
● Understanding dispatch in the presence of inheritance is a subtle

aspect of object-oriented programming. E.g.,:

● p has static type Point
● p has dynamic type ColorPoint
● p.movePoint() must invoke the ColorPoint version!

p : Point;
p <- new ColorPoint;
p.movePoint(1, 2);

Cool: Method Invocation + Inheritance

● Methods are invoked via dynamic dispatch
● Understanding dispatch in the presence of inheritance is a subtle

aspect of object-oriented programming. E.g.,:

● p has static type Point
● p has dynamic type ColorPoint
● p.movePoint() must invoke the ColorPoint version!

p : Point;
p <- new ColorPoint;
p.movePoint(1, 2);

Aside that will come up
again: static means “just by
reading the program text”;
dynamic means “at run time”

Cool: Other Expressions

● Cool is an expression language (like OCaml)

Cool: Other Expressions

● Cool is an expression language (like OCaml)
○ every expression has both a type and a value

Cool: Other Expressions

● Cool is an expression language (like OCaml)
○ every expression has both a type and a value

● Includes:
○ Conditionals: if E then E else E fi

Cool: Other Expressions

● Cool is an expression language (like OCaml)
○ every expression has both a type and a value

● Includes:
○ Conditionals: if E then E else E fi
○ Loops: while E loop E pool

Cool: Other Expressions

● Cool is an expression language (like OCaml)
○ every expression has both a type and a value

● Includes:
○ Conditionals: if E then E else E fi
○ Loops: while E loop E pool
○ Case/switch: case E of x : Type => E ; … esac

Cool: Other Expressions

● Cool is an expression language (like OCaml)
○ every expression has both a type and a value

● Includes:
○ Conditionals: if E then E else E fi
○ Loops: while E loop E pool
○ Case/switch: case E of x : Type => E ; … esac
○ Assignments: x <- E

Cool: Other Expressions

● Cool is an expression language (like OCaml)
○ every expression has both a type and a value

● Includes:
○ Conditionals: if E then E else E fi
○ Loops: while E loop E pool
○ Case/switch: case E of x : Type => E ; … esac
○ Assignments: x <- E
○ Arithmetic, logic operators, comparison operators, etc.

Cool: Other Expressions

● Cool is an expression language (like OCaml)
○ every expression has both a type and a value

● Includes:
○ Conditionals: if E then E else E fi
○ Loops: while E loop E pool
○ Case/switch: case E of x : Type => E ; … esac
○ Assignments: x <- E
○ Arithmetic, logic operators, comparison operators, etc.

● Missing: arrays, floats, interfaces, exceptions…
○ any other missing things you noticed?

Cool: Memory Management

Cool: Memory Management

● Memory is allocated every time that new E executes

Cool: Memory Management

● Memory is allocated every time that new E executes
● Memory is deallocated automatically when an object is no longer

reachable

Cool: Memory Management

● Memory is allocated every time that new E executes
● Memory is deallocated automatically when an object is no longer

reachable
○ this is the job of a garbage collector

Cool: Memory Management

● Memory is allocated every time that new E executes
● Memory is deallocated automatically when an object is no longer

reachable
○ this is the job of a garbage collector
○ your compiler will need to not leak too much memory…

Cool: Memory Management

● Memory is allocated every time that new E executes
● Memory is deallocated automatically when an object is no longer

reachable
○ this is the job of a garbage collector
○ your compiler will need to not leak too much memory…

■ …but building a good garbage collector is just one of many
paths to high-performance assembly

Cool: Memory Management

● Memory is allocated every time that new E executes
● Memory is deallocated automatically when an object is no longer

reachable
○ this is the job of a garbage collector
○ your compiler will need to not leak too much memory…

■ …but building a good garbage collector is just one of many
paths to high-performance assembly

○ we’ll cover garbage collectors in more detail (much) later in the
semester

● Don’t forget: PA1c2 due tomorrow
○ and full PA1 (all four languages!) due next Monday

Course Announcements

Course Announcements

● Don’t forget: PA1c2 due tomorrow
○ and full PA1 (all four languages!) due next Monday

● My OH today are modified (conflicting CS faculty candidate
meeting):
○ I will hold OH as usual from 3:30 until 4pm
○ OH will end 30 minutes early at 4pm
○ to account for this, I’ll hold extra OH from 4:30-5

Course Announcements

● Don’t forget: PA1c2 due tomorrow
○ and full PA1 (all four languages!) due next Monday

● My OH today are modified (conflicting CS faculty candidate
meeting):
○ I will hold OH as usual from 3:30 until 4pm
○ OH will end 30 minutes early at 4pm
○ to account for this, I’ll hold extra OH from 4:30-5

● PA2c1 is due next Friday (do it next week!)
○ this is a testing assignment: you’ll just write Cool programs

Bonus for those reading the slides :)

● Questions about fold are very popular on tests! If I say “write me a
function that does foozle to a list”, you should be able to code it up
with fold in OCaml-ish syntax.

