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Today’s Agenda

● Finish introduction to functional programming
○ polymorphism
○ higher-order functions

■ fold
■ sorting

● Introduction to Cool
○ syntax
○ objects
○ methods
○ types
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Polymorphism
● Functions and type inference in ML are polymorphic

○ “Polymorphic” means they operate on more than one type

let rec length x = match x with 
  | [] -> 0
  | hd :: tl -> 1 + length tl

val length : α list -> int

length [1;2;3] = 3
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length [1 ; “algol” ] = ?



Higher-order functions

● Functions are first-class values



Higher-order functions

● Functions are first-class values
○ Can be used whenever a value is expected (i.e., as an expression)



Higher-order functions

● Functions are first-class values
○ Can be used whenever a value is expected (i.e., as an expression)
○ Notably, can be passed around



Higher-order functions

● Functions are first-class values
○ Can be used whenever a value is expected (i.e., as an expression)
○ Notably, can be passed around
○ Closure captures the environment



Higher-order functions

● Functions are first-class values
○ Can be used whenever a value is expected (i.e., as an expression)
○ Notably, can be passed around
○ Closure captures the environment

let rec map f lst = match lst with 
  | [] -> []
  | hd :: tl -> f hd :: map f tl



Higher-order functions

● Functions are first-class values
○ Can be used whenever a value is expected (i.e., as an expression)
○ Notably, can be passed around
○ Closure captures the environment

let rec map f lst = match lst with 
  | [] -> []
  | hd :: tl -> f hd :: map f tl f is itself a 

function!



Higher-order functions

● Functions are first-class values
○ Can be used whenever a value is expected (i.e., as an expression)
○ Notably, can be passed around
○ Closure captures the environment

let rec map f lst = match lst with 
  | [] -> []
  | hd :: tl -> f hd :: map f tl
val map : ?



Higher-order functions

● Functions are first-class values
○ Can be used whenever a value is expected (i.e., as an expression)
○ Notably, can be passed around
○ Closure captures the environment

let rec map f lst = match lst with 
  | [] -> []
  | hd :: tl -> f hd :: map f tl
val map : (𝝰 -> 𝝱) -> ?



Higher-order functions

● Functions are first-class values
○ Can be used whenever a value is expected (i.e., as an expression)
○ Notably, can be passed around
○ Closure captures the environment

let rec map f lst = match lst with 
  | [] -> []
  | hd :: tl -> f hd :: map f tl
val map : (𝝰 -> 𝝱) -> 𝝰 list -> ?



Higher-order functions

● Functions are first-class values
○ Can be used whenever a value is expected (i.e., as an expression)
○ Notably, can be passed around
○ Closure captures the environment

let rec map f lst = match lst with 
  | [] -> []
  | hd :: tl -> f hd :: map f tl
val map : (𝝰 -> 𝝱) -> 𝝰 list -> 𝝱 list 



Higher-order functions

● Functions are first-class values
○ Can be used whenever a value is expected (i.e., as an expression)
○ Notably, can be passed around
○ Closure captures the environment

let rec map f lst = match lst with 
  | [] -> []
  | hd :: tl -> f hd :: map f tl
val map : (𝝰 -> 𝝱) -> 𝝰 list -> 𝝱 list 
let offset = 10 in
let myfun x = x + offset in
val myfun : ?



Higher-order functions

● Functions are first-class values
○ Can be used whenever a value is expected (i.e., as an expression)
○ Notably, can be passed around
○ Closure captures the environment

let rec map f lst = match lst with 
  | [] -> []
  | hd :: tl -> f hd :: map f tl
val map : (𝝰 -> 𝝱) -> 𝝰 list -> 𝝱 list 
let offset = 10 in
let myfun x = x + offset in
val myfun : int -> int



Higher-order functions

● Functions are first-class values
○ Can be used whenever a value is expected (i.e., as an expression)
○ Notably, can be passed around
○ Closure captures the environment

let rec map f lst = match lst with 
  | [] -> []
  | hd :: tl -> f hd :: map f tl
val map : (𝝰 -> 𝝱) -> 𝝰 list -> 𝝱 list 
let offset = 10 in
let myfun x = x + offset in
val myfun : int -> int
map myfun [1;8;22] = ?



Higher-order functions

● Functions are first-class values
○ Can be used whenever a value is expected (i.e., as an expression)
○ Notably, can be passed around
○ Closure captures the environment

let rec map f lst = match lst with 
  | [] -> []
  | hd :: tl -> f hd :: map f tl
val map : (𝝰 -> 𝝱) -> 𝝰 list -> 𝝱 list 
let offset = 10 in
let myfun x = x + offset in
val myfun : int -> int
map myfun [1;8;22] = [11;18;32]



Higher-order functions

● Functions are first-class values
○ Can be used whenever a value is expected (i.e., as an expression)
○ Notably, can be passed around
○ Closure captures the environment

let rec map f lst = match lst with 
  | [] -> []
  | hd :: tl -> f hd :: map f tl
val map : (𝝰 -> 𝝱) -> 𝝰 list -> 𝝱 list 
let offset = 10 in
let myfun x = x + offset in
val myfun : int -> int
map myfun [1;8;22] = [11;18;32]

Extremely powerful 
programming technique:
● general iterators
● implement 

abstraction
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The Story of Fold

● We’ve seen length and map
● We can also imagine:

○ sum [1; 5; 8] = 14
○ product [1; 5; 8] = 40
○ and [true; true; false] = false
○ or [true; true; false] = true
○ filter (fun x -> x > 4) [1; 5; 8] = [5; 8]
○ reverse [1; 5; 8] = [8; 5; 1]
○ mem 5 [1; 5; 8] = true

How can we build 
all of these?
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The Story of Fold

● The fold operator comes from recursion theory (Kleene, 1952):

let rec fold f acc lst = match lst with
| [] -> acc
| hd :: tl -> fold f (f acc hd) tl

val fold : (𝝰 -> 𝝱 -> 𝝰) -> 𝝰 -> 𝝱 list -> 𝝰

● on the whiteboard, this example (f is +):

  f   acc    lst    (fold f acc lst)
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Let’s build things out of fold

● length lst = fold (fun acc elt ->   acc + 1  ) 0 lst 
● sum lst = fold (fun acc elt ->   acc + elt  ) 0 lst
● product lst = fold (fun acc elt ->   acc * elt  ) 1 lst
● and lst = fold (fun acc elt ->   acc & elt  ) true lst

● think you can do or on your own? 
○ what about reverse?
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Let’s build things out of fold, part 2

● reverse lst = fold (fun acc elt ->   acc @ [ e ]  ) [] lst
○ note types: (acc : 𝝰 list) (e : 𝝰) 

● filter keep_it lst = fold (fun acc elt ->  if keep_it elt 
then elt :: acc 
else acc  ) [] lst

● filter wanted lst = fold (fun acc elt ->   acc || wanted = elt  ) false lst
○ note types: (acc : bool) (e : 𝝰) 

● Could we do map?
○ Recall: map (fun x -> x +10) [1;2] = [11;12]
○ Let’s do it together…
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Let’s build things out of fold, part 3 (map)

let map myfun lst =
fold (fun acc elt -> (myfun elt) :: acc) [] lst

● Types of:
○ myfun : 𝝰 -> 𝝱
○ lst : 𝝰 list
○ acc : 𝝱 list
○ elt : 𝝰 

● Could we do sort?
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● sort (fun a b -> a < b ) langs = [“algol”; “c”; “fortran” ]
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Sorting examples

let langs = [“fortran”; “algol”; “c” ] in
● sort (fun a b -> a < b ) langs = [“algol”; “c”; “fortran” ]
● sort (fun a b -> a > b ) langs = [“fortran”; “c”; “algol” ]
● sort (fun a b -> strlen a  < strlen b ) langs = [“c”; “algol”; “fortran” ]

● Recall Java’s Comparator interface
○ in this functional style, our implementations are much simpler!
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Partial Application and Currying

let myadd x y = x + y
val myadd : int -> int -> int
myadd 3 5 = 8
let addtwo = myadd 2

● How do we know what this means? We use referential transparency! 
Basically, just substitute it in.

val addtwo : int -> int
addtwo 77 = 79

● called Currying: “if you fix some arguments, you get a function of the 
remaining arguments” (remember Monday’s trivia question?)



Trivia Break: Current Events

This Chinese artificial intelligence company released a chatbot using 
its latest R1 model on January 10th. By January 27th, it had 
surpassed ChatGPT as the most-downloaded free app on the iOS 
App Store in the United States. The R1 model is claimed to have been 
trained at small fraction of the cost of training other state-of-the-art 
foundation models, like GPT-4.



Trivia Break: History

The New York Times mentioned this thing in 279 articles between 
October 6, 1957, and October 31, 1957 (more than 11 articles per 
day). Its launch created a crisis reaction in the United States that 
kicked of the “Space Race” that culminated in the Apollo moon 
landings in the 1960s and 1970s. After its first orbit, the Telegraph 
Agency of the Soviet Union (TASS) transmitted: "As result of great, 
intense work of scientific institutes and design bureaus the first 
artificial Earth satellite has been built."
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○ syntax
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○ methods
○ types
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○ Designed to be implementable in one semester

● Give a taste of implementing modern features, such as:
○ Abstraction
○ Static Typing
○ Inheritance
○ Dynamic Dispatch
○ And more ...

● But many “grungy” things are left out
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A Simple Cool Example

class Point {
x : Int <- 1;
y : Int; (* use default value *) 

};

●  Cool programs are sets of class definitions

○ A special Main class with a special method main() 

○ Classes are like those in Java or Python or C++

● class = a collection of fields and methods

● Instances of a class are objects
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Cool Objects

class Point {
x : Int <- 1;
y : Int; (* use default value *) 

};

● The expression new Point creates a new object of class Point
● An object can be thought of as a record with a slot for each 

attribute (= field)
x y

1 0



Cool Methods

class Point {
x : Int <- 1;
y : Int; (* use default value *) 

   movePoint(newx : Int, newy : Int) : Point {
           { x <- newx;

   y <- newy;
             self;
           } -- close block expression
      }; -- close method
 }; -- close class

A class can also define 
methods for manipulating 
its attributes



Cool Methods

class Point {
x : Int <- 1;
y : Int; (* use default value *) 

   movePoint(newx : Int, newy : Int) : Point {
           { x <- newx;

   y <- newy;
             self;
           } -- close block expression
      }; -- close method
 }; -- close class

Methods can refer to the 
current object using the 
self keyword



Cool Methods

class Point {
x : Int <- 1;
y : Int; (* use default value *) 

   movePoint(newx : Int, newy : Int) : Point {
           { x <- newx;

   y <- newy;
             self;
           } -- close block expression
      }; -- close method
 }; -- close class

Aside: yes, the placement 
of semicolons is arbitrary. 
Still, don’t get it wrong.
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Cool: Information Hiding

● Cool’s methods are global: they can be accessed from any other 
part of the program
○ like public in Java

● Attributes, on the other hand, are local: they can only be accessed 
by that class’ methods
○ conveniently, this means there is no dereference syntax

■ e.g., you can’t write f.x in Cool!
○ instead, all attributes are accessed directly by name

■ simplifies reasoning about scopes (we’ll come back to it)
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Cool: Methods and Object Layout

● Each object knows how to access the code of its methods
● As if the object contains a slot pointing to the code:

●
● This is a simplification: in reality, implementations save space by 

sharing these pointers among instances of the same class:

x y movePoint

1 0 *
(code for movePoint)

x y methods

1 0 *

movePoint

setX

...

(code for movePoint)
(code for setX)

Another topic we’ll cover 
in a lot more detail later!
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● We can extend points to color points using subclassing, which gives 
us a class hierarchy. E.g.,:

class ColorPoint extends Point {
     color : Int <- 0;
     movePoint(newx:Int, newy:Int) : Point {
          {  color <- 0;
             x <- newx; y <- newy;
             self;
  };
};

●

Can redefine methods 
(= Java’s overriding)



Cool: Inheritance

● We can extend points to color points using subclassing, which gives 
us a class hierarchy. E.g.,:

class ColorPoint extends Point {
     color : Int <- 0;
     movePoint(newx:Int, newy:Int) : Point {
          {  color <- 0;
             x <- newx; y <- newy;
             self;
  };
};

●

Can still reference 
attributes defined in 
superclass
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Cool: Types

● Every class in Cool defines a type
● Base (built-in, predefined classes):

○ Int for integers (including all integer literals)
○ Bool for booleans (including true and false)
○ String for strings (including string literals)
○ Object root of class hierarchy
○ IO for built-in input/output operations

● All variables must be declared with their type
○ compiler infers types for expressions (like Java or C)



Cool: Typechecking

x : Point;
x <- new ColorPoint;



Cool: Typechecking

x : Point;
x <- new ColorPoint;

● This program is well-typed iff Point is an ancestor of ColorPoint in 
the type hierarchy



Cool: Typechecking

x : Point;
x <- new ColorPoint;

● This program is well-typed iff Point is an ancestor of ColorPoint in 
the type hierarchy
○ And anywhere a Point is expected, we can use a ColorPoint



Cool: Typechecking

x : Point;
x <- new ColorPoint;

● This program is well-typed iff Point is an ancestor of ColorPoint in 
the type hierarchy
○ And anywhere a Point is expected, we can use a ColorPoint

This is called the Liskov 
Substitution Principle: “any 
subclass object should be safe 
to use in place of a superclass 
object at run time”



Cool: Typechecking

x : Point;
x <- new ColorPoint;

● This program is well-typed iff Point is an ancestor of ColorPoint in 
the type hierarchy
○ And anywhere a Point is expected, we can use a ColorPoint

● Another way of phrasing this: … is well-typed iff ColorPoint is a 
subtype of Point

This is called the Liskov 
Substitution Principle: “any 
subclass object should be safe 
to use in place of a superclass 
object at run time”



Cool: Typechecking

x : Point;
x <- new ColorPoint;

● This program is well-typed iff Point is an ancestor of ColorPoint in 
the type hierarchy
○ And anywhere a Point is expected, we can use a ColorPoint

● Another way of phrasing this: … is well-typed iff ColorPoint is a 
subtype of Point

● Cool’s type safety theorem says that a well-typed program cannot 
result in run-time type errors

This is called the Liskov 
Substitution Principle: “any 
subclass object should be safe 
to use in place of a superclass 
object at run time”
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Pedantic aside: runtime vs run-time vs run time

There are three similar words that people often confuse in Computer 
Science:
● a runtime is a computer program that provides an environment in 

which to execute other programs
○ e.g., the JVM, your favorite shell

●  run time (a noun) is either the time at which a program runs or 
the amount of time it takes to execute

● run-time (an adjective) describes something that happens at run 
time
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Cool: Method Invocation + Inheritance

● Methods are invoked via dynamic dispatch
● Understanding dispatch in the presence of inheritance is a subtle 

aspect of object-oriented programming. E.g.,:

● p has static type Point
● p has dynamic type ColorPoint
● p.movePoint() must invoke the ColorPoint version!

p : Point;
p <- new ColorPoint;
p.movePoint(1, 2);

Aside that will come up 
again: static means “just by 
reading the program text”; 
dynamic means “at run time”
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Cool: Other Expressions

● Cool is an expression language (like OCaml)
○ every expression has both a type and a value

● Includes:
○ Conditionals: if E then E else E fi
○ Loops: while E loop E pool
○ Case/switch: case E of x : Type => E ; … esac
○ Assignments: x <- E
○ Arithmetic, logic operators, comparison operators, etc.

● Missing: arrays, floats, interfaces, exceptions…
○ any other missing things you noticed?
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Cool: Memory Management

● Memory is allocated every time that new E executes
● Memory is deallocated automatically when an object is no longer 

reachable
○ this is the job of a garbage collector
○ your compiler will need to not leak too much memory…

■ …but building a good garbage collector is just one of many 
paths to high-performance assembly

○ we’ll cover garbage collectors in more detail (much) later in the 
semester
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Course Announcements

● Don’t forget: PA1c2 due tomorrow
○ and full PA1 (all four languages!) due next Monday

● My OH today are modified (conflicting CS faculty candidate 
meeting):
○ I will hold OH as usual from 3:30 until 4pm
○ OH will end 30 minutes early at 4pm
○ to account for this, I’ll hold extra OH from 4:30-5

● PA2c1 is due next Friday (do it next week!)
○ this is a testing assignment: you’ll just write Cool programs



Bonus for those reading the slides :)

● Questions about fold are very popular on tests! If I say “write me a 
function that does foozle to a list”, you should be able to code it up 
with fold in OCaml-ish syntax.


