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Programming language paradigms

Definition: a language paradigm is a way to classify programming 
languages, usually by their style of structuring programs
● usually based on some kind of mathematical foundation
● common paradigms include:

○ imperative: change state, assignments
○ structured: if/block/routine control flow
○ object-oriented: message passing (=dyn. dispatch), inheritance
○ functional: functions are first-class citizens that can be passed 

around or called recursively. We can avoid changing state by 
passing copies.
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Imperative programming

Definition: in the imperative paradigm, programs are sequences of 
commands that destructively update one or more arrays

● key mathematical formalism: Turing machines
○ review: what’s a Turing machine (on the whiteboard)?

● this is the single most-common programming paradigm
● models actual computers very well:

○ commands = instructions to the processor
○ array that is destructively updated = registers/memory/disk
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Imperative programming: example

Consider the following C program:

double avg(int x, int y) { 
  double z = (double)(x + y); 
  z = z / 2; 
  printf(“Answer: %g\n”, z); 
  return z; 
}

destructive updates of 
memory cells
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Functional programming

Definition: in the functional paradigm, programs are compositions of 
mathematical expressions (especially functions)

● key mathematical formalism: lambda calculus
○ in the lambda calculus, everything is a function
○ lambda calculus is as powerful as Turing machines

■ “as powerful” = anything you can compute with a Turing 
machine can also be computed with the lambda calculus

● functional programming models math well
○ it is easier to formally reason about functional programs
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Functional programming: characteristics

● Computation = evaluating (math) functions
● Avoid “global state” and “mutable data” 
● Get stuff done = apply (higher-order) functions
● Avoid sequential commands 
● Important Features of functional languages: 

○ Higher-order, first-class functions 
○ Closures and recursion 
○ Lists and list processing

Let’s look at how 
imperative and functional 
languages manage state in 
a bit more detail
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State management: functional vs imperative

Definition: The state of a program is all of the current variable and 
heap values
● Imperative programs destructively update the state.

○ e.g., after executing *x = y (in a C program), the memory cell 
that x points to now holds the value y. Its old value is gone.

● Functional programs yield new similar states over time.
○ let x = y in … , however, only changes x’s value within 

the scope of the …
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double avg(int x, int y) { 
  double z = (double)(x + y); 
  z = z / 2; 
  printf(“Answer: %g\n”, z); 
  return z; 
} let avg (x:int) (y:int) : float = begin

  let z = float_of_int (x + y) in
  let z = z /. 2.0 in
  printf “Answer: %g\n” z ;
  z
end

NOT the same as a semi-colon: 
commands vs expressions

Let’s translate 
this C program 
into OCaml
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Definition: An expression is a syntactic entity in a programming 
language that may be evaluated to determine its value.
● e.g., the expression “5 + 3” can be evaluated to “8”

Definition: A command is a syntactic entity in a programming 
language which causes some computation (or side-effect) to occur, 
but which does not itself evaluate to a value
● e.g., a call to printf prints something to the terminal, but doesn’t 

actually evaluate to anything

We’ll come back to this later in 
the course, when we discuss 
operational semantics
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double avg(int x, int y) { 
  double z = (double)(x + y); 
  z = z / 2; 
  printf(“Answer: %g\n”, z); 
  return z; 
} let avg (x:int) (y:int) : float = begin

  let z = float_of_int (x + y) in
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end
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limited to inherently 
“imperative” operations (I/O, 
saving to disk, etc.)

Let’s translate 
this C program 
into OCaml



Basic functional programming

double avg(int x, int y) { 
  double z = (double)(x + y); 
  z = z / 2; 
  printf(“Answer: %g\n”, z); 
  return z; 
} let avg (x:int) (y:int) : float = begin

  let z = float_of_int (x + y) in
  let z = z /. 2.0 in
  printf “Answer: %g\n” z ;
  z
end

Let’s translate 
this C program 
into OCaml



Basic functional programming

double avg(int x, int y) { 
  double z = (double)(x + y); 
  z = z / 2; 
  printf(“Answer: %g\n”, z); 
  return z; 
} let avg (x:int) (y:int) : float = begin

  let z = float_of_int (x + y) in
  let z = z /. 2.0 in
  printf “Answer: %g\n” z ;
  z
end

no “return” statement, 
because everything is an 
expression

Let’s translate 
this C program 
into OCaml
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Tuples and Pairs

Definition: a tuple (or pair) is the Cartesian product of two types

● you actually already know this concept (“from 10th grade”)
● e.g., what is a “point” in your 10th-grade math class?

let x = (22, 58) in
let y, z = x in
printf “1st element: %d” y;
...

let add_points p1 p2 =
  let x1, y1 = p1 in
  let x2, y2 = p2 in
  (x1 + x2, y1 + y2)

point example:
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Aside: “cons”, “car”, and “cdr”

● cons is a fundamental operation from Lisp, the first practical 
functional programming language (invented in the 1950s)
○ and 2nd higher-order language that’s still in use, after Fortran

● It’s named “cons” because it constructs memory objects which hold 
two values or pointers to two values
○ e.g., cons 2 3 in Lisp would create the pair (2, 3)
○ it’s used as shorthand for similar operations in modern FP

● you might  also here “car” and “cdr” to refer to the first (resp. 
second) elements of a cons-pair (also historical Lisp terminology)
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Lists are Your Friends

● Empty list [ ]
● Singleton [ element ]
● Longer list [ e1 ; e2 ; e3 ]
● Cons x::[y;z] = [x;y;z]
● Append [w;x]@[y;z] = [w;x;y;z]

All lists must be homogenous (i.e., all elements must have same type)

Concept OCaml Syntax
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Functional examples

● Simple function set (built out of lists):

let rec add_elem (s, e) =
if s = [] then [e]
else if List.hd s = e then s
else List.hd s :: add_elem(List.tl s, e)

● Same function using pattern matching instead:

let rec add_elem (s, e) = match s with
| [] -> [e]
| hd :: tl when e = hd -> s
| hd :: tl -> hd :: add_elem(tl, e)



Equivalent Imperative (C) Code
List* add_elem(List *s, item e) { 
  if (s == NULL) {
    return list(e, NULL); 
  } else if (s->hd == e) {
    return s;
  } else if (s->tl == NULL) {
    s->tl = list(e, NULL); 
    return s; 
  } else {
    return add_elem(s->tl, e); 
  }
}



Equivalent Imperative (C) Code
List* add_elem(List *s, item e) { 
  if (s == NULL) {
    return list(e, NULL); 
  } else if (s->hd == e) {
    return s;
  } else if (s->tl == NULL) {
    s->tl = list(e, NULL); 
    return s; 
  } else {
    return add_elem(s->tl, e); 
  }
}

More cases 
to handle!



Functional advantages



Functional advantages

● Tractable program semantics
○ Procedures are functions (simplifies reasoning)
○ Formulate and prove assertions about code more easily
○ More readable (if you like math)



Functional advantages

● Tractable program semantics
○ Procedures are functions (simplifies reasoning)
○ Formulate and prove assertions about code more easily
○ More readable (if you like math)

● Referential transparency
○ Replace any expression by its value without changing the 

result 



Functional advantages

● Tractable program semantics
○ Procedures are functions (simplifies reasoning)
○ Formulate and prove assertions about code more easily
○ More readable (if you like math)

● Referential transparency
○ Replace any expression by its value without changing the 

result 
● “No” side-effects

○ Fewer errors
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Functional disadvantages

● Efficiency
○ Copying takes time

● Compiler implementation
○ Frequent memory allocation

● Unfamiliar (to you!)
○ New programming style

● Not appropriate for every program
○ Some programs are inherently 

stateful (e.g., operating systems)



Trivia Break: Computer Science History

This American computer scientist and mathematician was born in 
Washington, DC, in 1903. While a professor at Princeton, he advised 
Alan Turing’s doctoral dissertation. He is known for inventing the 
lambda calculus, though he made many other contributions to 
mathematics, computer science, and philosophy.



Trivia Break: Cuisine

This dish is a sauce or gravy seasoned with spices, mainly derived 
from the interchange of Indian cuisine with European cuisine 
following the Columbian Exchange. Many types of this dish exist in 
different international cuisines. For example, in Southeast Asia, it 
often contains a spice paste and coconut milk. In India, the spices are 
fried in oil or ghee to create a paste. In Britain, this dish is regarded as 
national dish; some types were adopted from India, but others—such 
as Chicken Tikka Masala—were wholly invented in Britain in the 20th 
century.
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ML’s innovative features

● Type system
○ Strongly typed
○ Type inference
○ Abstraction

● Modules
● Patterns
● Polymorphism
● Higher-order functions
● Concise formal semantics

  There are many ways of trying to 
understand programs. People often rely 
too much on one way, which is called 
“debugging” and consists of running a 
partly-understood program to see if it 
does what you expected. Another way, 
which ML advocates, is to install some 
means of understanding in the very 
programs themselves.
    - Robin Milner, 1997



Types

Definition: A type is a conservative over-approximation of the set of 
values an expression could possibly take on at run-time.



Types

Definition: A type is a conservative over-approximation of the set of 
values an expression could possibly take on at run-time.

● If x+3 has type Int, then x+3 could evaluate to 7 or -2 or 5102 
at run-time, but not “Hello” or 1.2



Types

Definition: A type is a conservative over-approximation of the set of 
values an expression could possibly take on at run-time.

● If x+3 has type Int, then x+3 could evaluate to 7 or -2 or 5102 
at run-time, but not “Hello” or 1.2

● To say that expression E has type T, we write: 

E : T



Types

Definition: A type is a conservative over-approximation of the set of 
values an expression could possibly take on at run-time.

● If x+3 has type Int, then x+3 could evaluate to 7 or -2 or 5102 
at run-time, but not “Hello” or 1.2

● To say that expression E has type T, we write: 

E : T

● Types help us find bugs early
○ Requiring types to match up can rule out bad programs 

without even having to test them!
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Aside: Why catch bugs earlier?

● An IBM report gives an average defect repair cost of (2008$):
○ $25 during coding 
○ $100 at build time 
○ $450 during testing/QA 
○ $16,000 post-release

[L. Williamson. IBM Rational software analyzer: Beyond source code. 2008.]
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ML Type System

● Type Inference

let rec add_elem (s, e) = match s with
| [] -> [e]
| hd :: tl when e = hd -> s
| hd :: tl -> hd :: add_elem(tl, e)
val add_elem : α list * α -> α list

●  α means “works for any type (your choice)”
○ “α list” means “List<T>” or “List<α>”

● ML infers (all!) types: inconsistent types are errors
● Optional type declarations ( exp : type )

○ Clarify ambiguous cases, documentation

You might be tempted to 
ask “How does ML infer 
types?” Unfortunately, this 
is a complex topic. Ask in 
OH if you’re curious, or 
take a PhD-level seminar 
from me or Iulian Neamtiu.
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Pattern Matching

● Simplifies code (eliminates ifs, accessors)

type btree = (* binary tree of strings *) 
  | Node of btree * string * btree
  | Leaf of string
let rec height tree = match tree with
  | Leaf _ -> 1
  | Node(x,_,y) -> 1 + max (height x) (height y)
let rec mem tree elt = match tree with 
  | Leaf str -> str = elt
  | Node(x,str,y) -> str = elt || mem x elt || mem y elt
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● What if I forget a case? E.g.,

let rec is_odd x = match x with 
  | 0 -> false
  | 2 -> false
  | x when x > 2 -> is_odd (x-2)



Pattern Matching Mistakes

● What if I forget a case? E.g.,

let rec is_odd x = match x with 
  | 0 -> false
  | 2 -> false
  | x when x > 2 -> is_odd (x-2)

Warning: this pattern-matching is not exhaustive.
Here is an example of a value that is not matched: 1
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Recall that α means 
“any one type”

Polymorphism
● Functions and type inference are polymorphic

○ “Polymorphic” means they operate on more than one type

let rec length x = match x with 
  | [] -> 0
  | hd :: tl -> 1 + length tl

val length : α list -> int

length [1;2;3] = 3
length [“algol”; ”smalltalk”; ”ml”] = 3 
length [1 ; “algol” ] = ?
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● Functions are first-class values
○ Can be used whenever a value is expected (i.e., as an expression)
○ Notably, can be passed around
○ Closure captures the environment

let rec map f lst = match lst with 
  | [] -> []
  | hd :: tl -> f hd :: map f tl
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Higher-order functions

● Functions are first-class values
○ Can be used whenever a value is expected (i.e., as an expression)
○ Notably, can be passed around
○ Closure captures the environment

let rec map f lst = match lst with 
  | [] -> []
  | hd :: tl -> f hd :: map f tl
val map : (𝝰 -> 𝝱) -> 𝝰 list -> 𝝱 list 
let offset = 10 in
let myfun x = x + offset in
val myfun : int -> int
map myfun [1;8;22] = [11;18;32]

Extremely powerful 
programming technique:
● general iterators
● implement 

abstraction
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The Story of Fold

● We’ve seen length and map
● We can also imagine:

○ sum [1; 5; 8] = 14
○ product [1; 5; 8] = 40
○ and [true; true; false] = false
○ or [true; true; false] = true
○ filter (fun x -> x > 4) [1; 5; 8] = [5; 8]
○ reverse [1; 5; 8] = [8; 5; 1]
○ mem 5 [1; 5; 8] = true

How can we build 
all of these?
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let rec fold f acc lst = match lst with
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type are the same!



The Story of Fold

● The fold operator comes from recursion theory (Kleene, 1952):

let rec fold f acc lst = match lst with
| [] -> acc
| hd :: tl -> fold f (f acc hd) tl

val fold : (𝝰 -> 𝝱 -> 𝝰) -> 𝝰 -> 𝝱 list -> 𝝰

● on the whiteboard, this example (f is +):

  f   acc    lst    (fold f acc lst)
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Let’s build things out of fold

● length lst = fold (fun acc elt ->   acc + 1  ) 0 lst 
● sum lst = fold (fun acc elt ->   acc + elt  ) 0 lst
● product lst = fold (fun acc elt ->   acc * elt  ) 1 lst
● and lst = fold (fun acc elt ->   acc & elt  ) true lst

● think you can do or on your own? 
○ what about reverse?
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Let’s build things out of fold, part 2

● reverse lst = fold (fun acc elt ->   acc @ [ e ]  ) [] lst
○ note types: (acc : 𝝰 list) (e : 𝝰) 

● filter keep_it lst = fold (fun acc elt ->  if keep_it elt 
then elt :: acc 
else acc  ) [] lst

● filter wanted lst = fold (fun acc elt ->   acc || wanted = elt  ) false lst
○ note types: (acc : bool) (e : 𝝰) 

● Could we do map?
○ Recall: map (fun x -> x +10) [1;2] = [11;12]
○ Let’s do it together…
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Let’s build things out of fold, part 3 (map)

let map myfun lst =
fold (fun acc elt -> (myfun elt) :: acc) [] lst

● Types of:
○ myfun : 𝝰 -> 𝝱
○ lst : 𝝰 list
○ acc : 𝝱 list
○ elt : 𝝰 

● Could we do sort?
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● sort (fun a b -> a < b ) langs = [“algol”; “c”; “fortran” ]
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Sorting examples

let langs = [“fortran”; “algol”; “c” ] in
● sort (fun a b -> a < b ) langs = [“algol”; “c”; “fortran” ]
● sort (fun a b -> a > b ) langs = [“fortran”; “c”; “algol” ]
● sort (fun a b -> strlen a  < strlen b ) langs = [“c”; “algol”; “fortran” ]

● Recall Java’s Comparator interface
○ in this functional style, our implementations are much simpler!
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Partial Application and Currying

let myadd x y = x + y
val myadd : int -> int -> int
myadd 3 5 = 8
let addtwo = myadd 2
● How do we know what this means? We use referential transparency! 

Basically, just substitute it in.
val addtwo : int -> int
addtwo 77 = 79
● called Currying: “if you fix some arguments, you get a function of the 

remaining arguments”



Course Announcements

● Don’t forget: PA1c1 due today
○ and PA1c2 (1 more language!) due Thursday
○ and PA1 (full, all four languages!) due next Monday

● Cool Reference Manual is assigned reading for Wednesday, too ;)
○ I certainly wouldn’t consider giving another quiz…
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