
Functional Programming (1/2)
Martin Kellogg

Programming language paradigms

Definition: a language paradigm is a way to classify programming
languages, usually by their style of structuring programs
● usually based on some kind of mathematical foundation

Programming language paradigms

Definition: a language paradigm is a way to classify programming
languages, usually by their style of structuring programs
● usually based on some kind of mathematical foundation
● common paradigms include:

○ imperative: change state, assignments

Programming language paradigms

Definition: a language paradigm is a way to classify programming
languages, usually by their style of structuring programs
● usually based on some kind of mathematical foundation
● common paradigms include:

○ imperative: change state, assignments
○ structured: if/block/routine control flow

Programming language paradigms

Definition: a language paradigm is a way to classify programming
languages, usually by their style of structuring programs
● usually based on some kind of mathematical foundation
● common paradigms include:

○ imperative: change state, assignments
○ structured: if/block/routine control flow
○ object-oriented: message passing (=dyn. dispatch), inheritance

Programming language paradigms

Definition: a language paradigm is a way to classify programming
languages, usually by their style of structuring programs
● usually based on some kind of mathematical foundation
● common paradigms include:

○ imperative: change state, assignments
○ structured: if/block/routine control flow
○ object-oriented: message passing (=dyn. dispatch), inheritance
○ functional: functions are first-class citizens that can be passed

around or called recursively. We can avoid changing state by
passing copies.

Imperative programming

Definition: in the imperative paradigm, programs are sequences of
commands that destructively update one or more arrays

Imperative programming

Definition: in the imperative paradigm, programs are sequences of
commands that destructively update one or more arrays

● key mathematical formalism: ???

Imperative programming

Definition: in the imperative paradigm, programs are sequences of
commands that destructively update one or more arrays

● key mathematical formalism: Turing machines

Imperative programming

Definition: in the imperative paradigm, programs are sequences of
commands that destructively update one or more arrays

● key mathematical formalism: Turing machines
○ review: what’s a Turing machine (on the whiteboard)?

Imperative programming

Definition: in the imperative paradigm, programs are sequences of
commands that destructively update one or more arrays

● key mathematical formalism: Turing machines
○ review: what’s a Turing machine (on the whiteboard)?

● this is the single most-common programming paradigm

Imperative programming

Definition: in the imperative paradigm, programs are sequences of
commands that destructively update one or more arrays

● key mathematical formalism: Turing machines
○ review: what’s a Turing machine (on the whiteboard)?

● this is the single most-common programming paradigm
● models actual computers very well:

○ commands = ?
○ array that is destructively updated = ?

Imperative programming

Definition: in the imperative paradigm, programs are sequences of
commands that destructively update one or more arrays

● key mathematical formalism: Turing machines
○ review: what’s a Turing machine (on the whiteboard)?

● this is the single most-common programming paradigm
● models actual computers very well:

○ commands = instructions to the processor
○ array that is destructively updated = ?

Imperative programming

Definition: in the imperative paradigm, programs are sequences of
commands that destructively update one or more arrays

● key mathematical formalism: Turing machines
○ review: what’s a Turing machine (on the whiteboard)?

● this is the single most-common programming paradigm
● models actual computers very well:

○ commands = instructions to the processor
○ array that is destructively updated = registers/memory/disk

Imperative programming: example

Consider the following C program:

double avg(int x, int y) {
 double z = (double)(x + y);
 z = z / 2;
 printf(“Answer: %g\n”, z);
 return z;
}

Imperative programming: example

Consider the following C program:

double avg(int x, int y) {
 double z = (double)(x + y);
 z = z / 2;
 printf(“Answer: %g\n”, z);
 return z;
}

semicolons separate
commands, program is a list of
commands

Imperative programming: example

Consider the following C program:

double avg(int x, int y) {
 double z = (double)(x + y);
 z = z / 2;
 printf(“Answer: %g\n”, z);
 return z;
}

destructive updates of
memory cells

Functional programming

Definition: in the functional paradigm, programs are compositions of
mathematical expressions (especially functions)

Functional programming

Definition: in the functional paradigm, programs are compositions of
mathematical expressions (especially functions)

● key mathematical formalism: ?

Functional programming

Definition: in the functional paradigm, programs are compositions of
mathematical expressions (especially functions)

● key mathematical formalism: lambda calculus

Functional programming

Definition: in the functional paradigm, programs are compositions of
mathematical expressions (especially functions)

● key mathematical formalism: lambda calculus
○ in the lambda calculus, everything is a function

Functional programming

Definition: in the functional paradigm, programs are compositions of
mathematical expressions (especially functions)

● key mathematical formalism: lambda calculus
○ in the lambda calculus, everything is a function
○ lambda calculus is as powerful as Turing machines

■ “as powerful” = anything you can compute with a Turing
machine can also be computed with the lambda calculus

Functional programming

Definition: in the functional paradigm, programs are compositions of
mathematical expressions (especially functions)

● key mathematical formalism: lambda calculus
○ in the lambda calculus, everything is a function
○ lambda calculus is as powerful as Turing machines

■ “as powerful” = anything you can compute with a Turing
machine can also be computed with the lambda calculus

● functional programming models math well
○ it is easier to formally reason about functional programs

Functional programming: characteristics

● Computation = evaluating (math) functions

Functional programming: characteristics

● Computation = evaluating (math) functions
● Avoid “global state” and “mutable data”

Functional programming: characteristics

● Computation = evaluating (math) functions
● Avoid “global state” and “mutable data”
● Get stuff done = apply (higher-order) functions

Functional programming: characteristics

● Computation = evaluating (math) functions
● Avoid “global state” and “mutable data”
● Get stuff done = apply (higher-order) functions
● Avoid sequential commands

Functional programming: characteristics

● Computation = evaluating (math) functions
● Avoid “global state” and “mutable data”
● Get stuff done = apply (higher-order) functions
● Avoid sequential commands
● Important Features of functional languages:

○ Higher-order, first-class functions
○ Closures and recursion
○ Lists and list processing

Functional programming: characteristics

● Computation = evaluating (math) functions
● Avoid “global state” and “mutable data”
● Get stuff done = apply (higher-order) functions
● Avoid sequential commands
● Important Features of functional languages:

○ Higher-order, first-class functions
○ Closures and recursion
○ Lists and list processing

Let’s look at how
imperative and functional
languages manage state in
a bit more detail

State management: functional vs imperative

Definition: The state of a program is all of the current variable and
heap values

State management: functional vs imperative

Definition: The state of a program is all of the current variable and
heap values
● Imperative programs destructively update the state.

State management: functional vs imperative

Definition: The state of a program is all of the current variable and
heap values
● Imperative programs destructively update the state.

○ e.g., after executing *x = y (in a C program), the memory cell
that x points to now holds the value y. Its old value is gone.

State management: functional vs imperative

Definition: The state of a program is all of the current variable and
heap values
● Imperative programs destructively update the state.

○ e.g., after executing *x = y (in a C program), the memory cell
that x points to now holds the value y. Its old value is gone.

● Functional programs yield new similar states over time.

State management: functional vs imperative

Definition: The state of a program is all of the current variable and
heap values
● Imperative programs destructively update the state.

○ e.g., after executing *x = y (in a C program), the memory cell
that x points to now holds the value y. Its old value is gone.

● Functional programs yield new similar states over time.
○ let x = y in … , however, only changes x’s value within

the scope of the …

Basic functional programming

double avg(int x, int y) {
 double z = (double)(x + y);
 z = z / 2;
 printf(“Answer: %g\n”, z);
 return z;
}

Let’s translate
this C program
into OCaml

Basic functional programming

double avg(int x, int y) {
 double z = (double)(x + y);
 z = z / 2;
 printf(“Answer: %g\n”, z);
 return z;
} let avg (x:int) (y:int) : float = begin

 let z = float_of_int (x + y) in
 let z = z /. 2.0 in
 printf “Answer: %g\n” z ;
 z
end

Let’s translate
this C program
into OCaml

Basic functional programming

double avg(int x, int y) {
 double z = (double)(x + y);
 z = z / 2;
 printf(“Answer: %g\n”, z);
 return z;
} let avg (x:int) (y:int) : float = begin

 let z = float_of_int (x + y) in
 let z = z /. 2.0 in
 printf “Answer: %g\n” z ;
 z
end

Let’s translate
this C program
into OCaml

Basic functional programming

double avg(int x, int y) {
 double z = (double)(x + y);
 z = z / 2;
 printf(“Answer: %g\n”, z);
 return z;
} let avg (x:int) (y:int) : float = begin

 let z = float_of_int (x + y) in
 let z = z /. 2.0 in
 printf “Answer: %g\n” z ;
 z
end

NOT the same as a semi-colon:
commands vs expressions

Let’s translate
this C program
into OCaml

Aside: commands vs expressions

Aside: commands vs expressions

Definition: An expression is a syntactic entity in a programming
language that may be evaluated to determine its value.
● e.g., the expression “5 + 3” can be evaluated to “8”

Aside: commands vs expressions

Definition: An expression is a syntactic entity in a programming
language that may be evaluated to determine its value.
● e.g., the expression “5 + 3” can be evaluated to “8”

Definition: A command is a syntactic entity in a programming
language which causes some computation (or side-effect) to occur,
but which does not itself evaluate to a value
● e.g., a call to printf prints something to the terminal, but doesn’t

actually evaluate to anything

Aside: commands vs expressions

Definition: An expression is a syntactic entity in a programming
language that may be evaluated to determine its value.
● e.g., the expression “5 + 3” can be evaluated to “8”

Definition: A command is a syntactic entity in a programming
language which causes some computation (or side-effect) to occur,
but which does not itself evaluate to a value
● e.g., a call to printf prints something to the terminal, but doesn’t

actually evaluate to anything

We’ll come back to this later in
the course, when we discuss
operational semantics

Basic functional programming

double avg(int x, int y) {
 double z = (double)(x + y);
 z = z / 2;
 printf(“Answer: %g\n”, z);
 return z;
} let avg (x:int) (y:int) : float = begin

 let z = float_of_int (x + y) in
 let z = z /. 2.0 in
 printf “Answer: %g\n” z ;
 z
end

NOT the same as a semi-colon:
commands vs expressions

Let’s translate
this C program
into OCaml

Basic functional programming

double avg(int x, int y) {
 double z = (double)(x + y);
 z = z / 2;
 printf(“Answer: %g\n”, z);
 return z;
} let avg (x:int) (y:int) : float = begin

 let z = float_of_int (x + y) in
 let z = z /. 2.0 in
 printf “Answer: %g\n” z ;
 z
end

Let’s translate
this C program
into OCaml

Basic functional programming

double avg(int x, int y) {
 double z = (double)(x + y);
 z = z / 2;
 printf(“Answer: %g\n”, z);
 return z;
} let avg (x:int) (y:int) : float = begin

 let z = float_of_int (x + y) in
 let z = z /. 2.0 in
 printf “Answer: %g\n” z ;
 z
end

even the operators are
type-safe (in OCaml)

Let’s translate
this C program
into OCaml

Basic functional programming

double avg(int x, int y) {
 double z = (double)(x + y);
 z = z / 2;
 printf(“Answer: %g\n”, z);
 return z;
} let avg (x:int) (y:int) : float = begin

 let z = float_of_int (x + y) in
 let z = z /. 2.0 in
 printf “Answer: %g\n” z ;
 z
end

Let’s translate
this C program
into OCaml

Basic functional programming

double avg(int x, int y) {
 double z = (double)(x + y);
 z = z / 2;
 printf(“Answer: %g\n”, z);
 return z;
} let avg (x:int) (y:int) : float = begin

 let z = float_of_int (x + y) in
 let z = z /. 2.0 in
 printf “Answer: %g\n” z ;
 z
end

commands still exist, but
limited to inherently
“imperative” operations (I/O,
saving to disk, etc.)

Let’s translate
this C program
into OCaml

Basic functional programming

double avg(int x, int y) {
 double z = (double)(x + y);
 z = z / 2;
 printf(“Answer: %g\n”, z);
 return z;
} let avg (x:int) (y:int) : float = begin

 let z = float_of_int (x + y) in
 let z = z /. 2.0 in
 printf “Answer: %g\n” z ;
 z
end

Let’s translate
this C program
into OCaml

Basic functional programming

double avg(int x, int y) {
 double z = (double)(x + y);
 z = z / 2;
 printf(“Answer: %g\n”, z);
 return z;
} let avg (x:int) (y:int) : float = begin

 let z = float_of_int (x + y) in
 let z = z /. 2.0 in
 printf “Answer: %g\n” z ;
 z
end

no “return” statement,
because everything is an
expression

Let’s translate
this C program
into OCaml

Tuples and Pairs

Definition: a tuple (or pair) is the Cartesian product of two types

Tuples and Pairs

Definition: a tuple (or pair) is the Cartesian product of two types

● you actually already know this concept (“from 10th grade”)
● e.g., what is a “point” in your 10th-grade math class?

Tuples and Pairs

Definition: a tuple (or pair) is the Cartesian product of two types

● you actually already know this concept (“from 10th grade”)
● e.g., what is a “point” in your 10th-grade math class?

let x = (22, 58) in
let y, z = x in
printf “1st element: %d” y;
...

Tuples and Pairs

Definition: a tuple (or pair) is the Cartesian product of two types

● you actually already know this concept (“from 10th grade”)
● e.g., what is a “point” in your 10th-grade math class?

let x = (22, 58) in
let y, z = x in
printf “1st element: %d” y;
...

tuple creation

Tuples and Pairs

Definition: a tuple (or pair) is the Cartesian product of two types

● you actually already know this concept (“from 10th grade”)
● e.g., what is a “point” in your 10th-grade math class?

let x = (22, 58) in
let y, z = x in
printf “1st element: %d” y;
...

tuple field extraction

Tuples and Pairs

Definition: a tuple (or pair) is the Cartesian product of two types

● you actually already know this concept (“from 10th grade”)
● e.g., what is a “point” in your 10th-grade math class?

let x = (22, 58) in
let y, z = x in
printf “1st element: %d” y;
...

let add_points p1 p2 =
 let x1, y1 = p1 in
 let x2, y2 = p2 in
 (x1 + x2, y1 + y2)

point example:

Lists are Your Friends

Concept OCaml Syntax

Lists are Your Friends

● Empty list []

Concept OCaml Syntax

Lists are Your Friends

● Empty list []
● Singleton [element]

Concept OCaml Syntax

Lists are Your Friends

● Empty list []
● Singleton [element]
● Longer list [e1 ; e2 ; e3]

Concept OCaml Syntax

Lists are Your Friends

● Empty list []
● Singleton [element]
● Longer list [e1 ; e2 ; e3]
● Cons x::[y;z] = [x;y;z]

Concept OCaml Syntax

Aside: “cons”, “car”, and “cdr”

● cons is a fundamental operation from Lisp, the first practical
functional programming language (invented in the 1950s)
○ and 2nd higher-order language that’s still in use, after Fortran

Aside: “cons”, “car”, and “cdr”

● cons is a fundamental operation from Lisp, the first practical
functional programming language (invented in the 1950s)
○ and 2nd higher-order language that’s still in use, after Fortran

● It’s named “cons” because it constructs memory objects which hold
two values or pointers to two values

Aside: “cons”, “car”, and “cdr”

● cons is a fundamental operation from Lisp, the first practical
functional programming language (invented in the 1950s)
○ and 2nd higher-order language that’s still in use, after Fortran

● It’s named “cons” because it constructs memory objects which hold
two values or pointers to two values
○ e.g., cons 2 3 in Lisp would create the pair (2, 3)

Aside: “cons”, “car”, and “cdr”

● cons is a fundamental operation from Lisp, the first practical
functional programming language (invented in the 1950s)
○ and 2nd higher-order language that’s still in use, after Fortran

● It’s named “cons” because it constructs memory objects which hold
two values or pointers to two values
○ e.g., cons 2 3 in Lisp would create the pair (2, 3)
○ it’s used as shorthand for similar operations in modern FP

Aside: “cons”, “car”, and “cdr”

● cons is a fundamental operation from Lisp, the first practical
functional programming language (invented in the 1950s)
○ and 2nd higher-order language that’s still in use, after Fortran

● It’s named “cons” because it constructs memory objects which hold
two values or pointers to two values
○ e.g., cons 2 3 in Lisp would create the pair (2, 3)
○ it’s used as shorthand for similar operations in modern FP

● you might also here “car” and “cdr” to refer to the first (resp.
second) elements of a cons-pair (also historical Lisp terminology)

Lists are Your Friends

● Empty list []
● Singleton [element]
● Longer list [e1 ; e2 ; e3]
● Cons x::[y;z] = [x;y;z]

Concept OCaml Syntax

Lists are Your Friends

● Empty list []
● Singleton [element]
● Longer list [e1 ; e2 ; e3]
● Cons x::[y;z] = [x;y;z]
● Append [w;x]@[y;z] = [w;x;y;z]

Concept OCaml Syntax

Lists are Your Friends

● Empty list []
● Singleton [element]
● Longer list [e1 ; e2 ; e3]
● Cons x::[y;z] = [x;y;z]
● Append [w;x]@[y;z] = [w;x;y;z]

All lists must be homogenous (i.e., all elements must have same type)

Concept OCaml Syntax

Functional examples

Functional examples

● Simple function set (built out of lists):

let rec add_elem (s, e) =
if s = [] then [e]
else if List.hd s = e then s
else List.hd s :: add_elem(List.tl s, e)

Functional examples

● Simple function set (built out of lists):

let rec add_elem (s, e) =
if s = [] then [e]
else if List.hd s = e then s
else List.hd s :: add_elem(List.tl s, e)

● Same function using pattern matching instead:

let rec add_elem (s, e) = match s with
| [] -> [e]
| hd :: tl when e = hd -> s
| hd :: tl -> hd :: add_elem(tl, e)

Equivalent Imperative (C) Code
List* add_elem(List *s, item e) {
 if (s == NULL) {
 return list(e, NULL);
 } else if (s->hd == e) {
 return s;
 } else if (s->tl == NULL) {
 s->tl = list(e, NULL);
 return s;
 } else {
 return add_elem(s->tl, e);
 }
}

Equivalent Imperative (C) Code
List* add_elem(List *s, item e) {
 if (s == NULL) {
 return list(e, NULL);
 } else if (s->hd == e) {
 return s;
 } else if (s->tl == NULL) {
 s->tl = list(e, NULL);
 return s;
 } else {
 return add_elem(s->tl, e);
 }
}

More cases
to handle!

Functional advantages

Functional advantages

● Tractable program semantics
○ Procedures are functions (simplifies reasoning)
○ Formulate and prove assertions about code more easily
○ More readable (if you like math)

Functional advantages

● Tractable program semantics
○ Procedures are functions (simplifies reasoning)
○ Formulate and prove assertions about code more easily
○ More readable (if you like math)

● Referential transparency
○ Replace any expression by its value without changing the

result

Functional advantages

● Tractable program semantics
○ Procedures are functions (simplifies reasoning)
○ Formulate and prove assertions about code more easily
○ More readable (if you like math)

● Referential transparency
○ Replace any expression by its value without changing the

result
● “No” side-effects

○ Fewer errors

Functional disadvantages

Functional disadvantages

● Efficiency
○ Copying takes time

Functional disadvantages

● Efficiency
○ Copying takes time

Functional disadvantages

● Efficiency
○ Copying takes time

● Compiler implementation
○ Frequent memory allocation

Functional disadvantages

● Efficiency
○ Copying takes time

● Compiler implementation
○ Frequent memory allocation

● Unfamiliar (to you!)
○ New programming style

Functional disadvantages

● Efficiency
○ Copying takes time

● Compiler implementation
○ Frequent memory allocation

● Unfamiliar (to you!)
○ New programming style

● Not appropriate for every program
○ Some programs are inherently

stateful (e.g., operating systems)

Trivia Break: Computer Science History

This American computer scientist and mathematician was born in
Washington, DC, in 1903. While a professor at Princeton, he advised
Alan Turing’s doctoral dissertation. He is known for inventing the
lambda calculus, though he made many other contributions to
mathematics, computer science, and philosophy.

Trivia Break: Cuisine

This dish is a sauce or gravy seasoned with spices, mainly derived
from the interchange of Indian cuisine with European cuisine
following the Columbian Exchange. Many types of this dish exist in
different international cuisines. For example, in Southeast Asia, it
often contains a spice paste and coconut milk. In India, the spices are
fried in oil or ghee to create a paste. In Britain, this dish is regarded as
national dish; some types were adopted from India, but others—such
as Chicken Tikka Masala—were wholly invented in Britain in the 20th
century.

ML’s innovative features

● Type system
○ Strongly typed
○ Type inference
○ Abstraction

● Modules
● Patterns
● Polymorphism
● Higher-order functions
● Concise formal semantics

ML’s innovative features

● Type system
○ Strongly typed
○ Type inference
○ Abstraction

● Modules
● Patterns
● Polymorphism
● Higher-order functions
● Concise formal semantics

 There are many ways of trying to
understand programs. People often rely
too much on one way, which is called
“debugging” and consists of running a
partly-understood program to see if it
does what you expected. Another way,
which ML advocates, is to install some
means of understanding in the very
programs themselves.
 - Robin Milner, 1997

Types

Definition: A type is a conservative over-approximation of the set of
values an expression could possibly take on at run-time.

Types

Definition: A type is a conservative over-approximation of the set of
values an expression could possibly take on at run-time.

● If x+3 has type Int, then x+3 could evaluate to 7 or -2 or 5102
at run-time, but not “Hello” or 1.2

Types

Definition: A type is a conservative over-approximation of the set of
values an expression could possibly take on at run-time.

● If x+3 has type Int, then x+3 could evaluate to 7 or -2 or 5102
at run-time, but not “Hello” or 1.2

● To say that expression E has type T, we write:

E : T

Types

Definition: A type is a conservative over-approximation of the set of
values an expression could possibly take on at run-time.

● If x+3 has type Int, then x+3 could evaluate to 7 or -2 or 5102
at run-time, but not “Hello” or 1.2

● To say that expression E has type T, we write:

E : T

● Types help us find bugs early
○ Requiring types to match up can rule out bad programs

without even having to test them!

Aside: Why catch bugs earlier?

Aside: Why catch bugs earlier?

● An IBM report gives an average defect repair cost of (2008$):
○ $25 during coding
○ $100 at build time
○ $450 during testing/QA
○ $16,000 post-release

[L. Williamson. IBM Rational software analyzer: Beyond source code. 2008.]

ML Type System

● Type Inference

ML Type System

● Type Inference

let rec add_elem (s, e) = match s with
| [] -> [e]
| hd :: tl when e = hd -> s
| hd :: tl -> hd :: add_elem(tl, e)

ML Type System

● Type Inference

let rec add_elem (s, e) = match s with
| [] -> [e]
| hd :: tl when e = hd -> s
| hd :: tl -> hd :: add_elem(tl, e)
val add_elem : α list * α -> α list

ML Type System

● Type Inference

let rec add_elem (s, e) = match s with
| [] -> [e]
| hd :: tl when e = hd -> s
| hd :: tl -> hd :: add_elem(tl, e)
val add_elem : α list * α -> α list

● α means “works for any type (your choice)”
○ “α list” means “List<T>” or “List<α>”

ML Type System

● Type Inference

let rec add_elem (s, e) = match s with
| [] -> [e]
| hd :: tl when e = hd -> s
| hd :: tl -> hd :: add_elem(tl, e)
val add_elem : α list * α -> α list

● α means “works for any type (your choice)”
○ “α list” means “List<T>” or “List<α>”

● ML infers (all!) types: inconsistent types are errors

ML Type System

● Type Inference

let rec add_elem (s, e) = match s with
| [] -> [e]
| hd :: tl when e = hd -> s
| hd :: tl -> hd :: add_elem(tl, e)
val add_elem : α list * α -> α list

● α means “works for any type (your choice)”
○ “α list” means “List<T>” or “List<α>”

● ML infers (all!) types: inconsistent types are errors
● Optional type declarations (exp : type)

○ Clarify ambiguous cases, documentation

ML Type System

● Type Inference

let rec add_elem (s, e) = match s with
| [] -> [e]
| hd :: tl when e = hd -> s
| hd :: tl -> hd :: add_elem(tl, e)
val add_elem : α list * α -> α list

● α means “works for any type (your choice)”
○ “α list” means “List<T>” or “List<α>”

● ML infers (all!) types: inconsistent types are errors
● Optional type declarations (exp : type)

○ Clarify ambiguous cases, documentation

You might be tempted to
ask “How does ML infer
types?” Unfortunately, this
is a complex topic. Ask in
OH if you’re curious, or
take a PhD-level seminar
from me or Iulian Neamtiu.

Pattern Matching

● Simplifies code (eliminates ifs, accessors)

Pattern Matching

● Simplifies code (eliminates ifs, accessors)

type btree = (* binary tree of strings *)
 | Node of btree * string * btree
 | Leaf of string

Pattern Matching

● Simplifies code (eliminates ifs, accessors)

type btree = (* binary tree of strings *)
 | Node of btree * string * btree
 | Leaf of string
let rec height tree = match tree with
 | Leaf _ -> 1
 | Node(x,_,y) -> 1 + max (height x) (height y)

Pattern Matching

● Simplifies code (eliminates ifs, accessors)

type btree = (* binary tree of strings *)
 | Node of btree * string * btree
 | Leaf of string
let rec height tree = match tree with
 | Leaf _ -> 1
 | Node(x,_,y) -> 1 + max (height x) (height y)
let rec mem tree elt = match tree with
 | Leaf str -> str = elt
 | Node(x,str,y) -> str = elt || mem x elt || mem y elt

Pattern Matching Mistakes

● What if I forget a case? E.g.,

let rec is_odd x = match x with
 | 0 -> false
 | 2 -> false
 | x when x > 2 -> is_odd (x-2)

Pattern Matching Mistakes

● What if I forget a case? E.g.,

let rec is_odd x = match x with
 | 0 -> false
 | 2 -> false
 | x when x > 2 -> is_odd (x-2)

Warning: this pattern-matching is not exhaustive.
Here is an example of a value that is not matched: 1

Polymorphism
● Functions and type inference are polymorphic

Polymorphism
● Functions and type inference are polymorphic

○ “Polymorphic” means they operate on more than one type

Polymorphism
● Functions and type inference are polymorphic

○ “Polymorphic” means they operate on more than one type

let rec length x = match x with
 | [] -> 0
 | hd :: tl -> 1 + length tl

Polymorphism
● Functions and type inference are polymorphic

○ “Polymorphic” means they operate on more than one type

let rec length x = match x with
 | [] -> 0
 | hd :: tl -> 1 + length tl

val length : α list -> int

Polymorphism
● Functions and type inference are polymorphic

○ “Polymorphic” means they operate on more than one type

let rec length x = match x with
 | [] -> 0
 | hd :: tl -> 1 + length tl

val length : α list -> int

Recall that α means
“any one type”

Polymorphism
● Functions and type inference are polymorphic

○ “Polymorphic” means they operate on more than one type

let rec length x = match x with
 | [] -> 0
 | hd :: tl -> 1 + length tl

val length : α list -> int

length [1;2;3] = 3

Recall that α means
“any one type”

Polymorphism
● Functions and type inference are polymorphic

○ “Polymorphic” means they operate on more than one type

let rec length x = match x with
 | [] -> 0
 | hd :: tl -> 1 + length tl

val length : α list -> int

length [1;2;3] = 3
length [“algol”; ”smalltalk”; ”ml”] = 3

Recall that α means
“any one type”

Polymorphism
● Functions and type inference are polymorphic

○ “Polymorphic” means they operate on more than one type

let rec length x = match x with
 | [] -> 0
 | hd :: tl -> 1 + length tl

val length : α list -> int

length [1;2;3] = 3
length [“algol”; ”smalltalk”; ”ml”] = 3
length [1 ; “algol”] = ?

Recall that α means
“any one type”

Recall that α means
“any one type”

Polymorphism
● Functions and type inference are polymorphic

○ “Polymorphic” means they operate on more than one type

let rec length x = match x with
 | [] -> 0
 | hd :: tl -> 1 + length tl

val length : α list -> int

length [1;2;3] = 3
length [“algol”; ”smalltalk”; ”ml”] = 3
length [1 ; “algol”] = ?

Higher-order functions

● Functions are first-class values

Higher-order functions

● Functions are first-class values
○ Can be used whenever a value is expected (i.e., as an expression)

Higher-order functions

● Functions are first-class values
○ Can be used whenever a value is expected (i.e., as an expression)
○ Notably, can be passed around

Higher-order functions

● Functions are first-class values
○ Can be used whenever a value is expected (i.e., as an expression)
○ Notably, can be passed around
○ Closure captures the environment

Higher-order functions

● Functions are first-class values
○ Can be used whenever a value is expected (i.e., as an expression)
○ Notably, can be passed around
○ Closure captures the environment

let rec map f lst = match lst with
 | [] -> []
 | hd :: tl -> f hd :: map f tl

Higher-order functions

● Functions are first-class values
○ Can be used whenever a value is expected (i.e., as an expression)
○ Notably, can be passed around
○ Closure captures the environment

let rec map f lst = match lst with
 | [] -> []
 | hd :: tl -> f hd :: map f tl f is itself a

function!

Higher-order functions

● Functions are first-class values
○ Can be used whenever a value is expected (i.e., as an expression)
○ Notably, can be passed around
○ Closure captures the environment

let rec map f lst = match lst with
 | [] -> []
 | hd :: tl -> f hd :: map f tl
val map : ?

Higher-order functions

● Functions are first-class values
○ Can be used whenever a value is expected (i.e., as an expression)
○ Notably, can be passed around
○ Closure captures the environment

let rec map f lst = match lst with
 | [] -> []
 | hd :: tl -> f hd :: map f tl
val map : (𝝰 -> 𝝱) -> ?

Higher-order functions

● Functions are first-class values
○ Can be used whenever a value is expected (i.e., as an expression)
○ Notably, can be passed around
○ Closure captures the environment

let rec map f lst = match lst with
 | [] -> []
 | hd :: tl -> f hd :: map f tl
val map : (𝝰 -> 𝝱) -> 𝝰 list -> ?

Higher-order functions

● Functions are first-class values
○ Can be used whenever a value is expected (i.e., as an expression)
○ Notably, can be passed around
○ Closure captures the environment

let rec map f lst = match lst with
 | [] -> []
 | hd :: tl -> f hd :: map f tl
val map : (𝝰 -> 𝝱) -> 𝝰 list -> 𝝱 list

Higher-order functions

● Functions are first-class values
○ Can be used whenever a value is expected (i.e., as an expression)
○ Notably, can be passed around
○ Closure captures the environment

let rec map f lst = match lst with
 | [] -> []
 | hd :: tl -> f hd :: map f tl
val map : (𝝰 -> 𝝱) -> 𝝰 list -> 𝝱 list
let offset = 10 in
let myfun x = x + offset in
val myfun : ?

Higher-order functions

● Functions are first-class values
○ Can be used whenever a value is expected (i.e., as an expression)
○ Notably, can be passed around
○ Closure captures the environment

let rec map f lst = match lst with
 | [] -> []
 | hd :: tl -> f hd :: map f tl
val map : (𝝰 -> 𝝱) -> 𝝰 list -> 𝝱 list
let offset = 10 in
let myfun x = x + offset in
val myfun : int -> int

Higher-order functions

● Functions are first-class values
○ Can be used whenever a value is expected (i.e., as an expression)
○ Notably, can be passed around
○ Closure captures the environment

let rec map f lst = match lst with
 | [] -> []
 | hd :: tl -> f hd :: map f tl
val map : (𝝰 -> 𝝱) -> 𝝰 list -> 𝝱 list
let offset = 10 in
let myfun x = x + offset in
val myfun : int -> int
map myfun [1;8;22] = ?

Higher-order functions

● Functions are first-class values
○ Can be used whenever a value is expected (i.e., as an expression)
○ Notably, can be passed around
○ Closure captures the environment

let rec map f lst = match lst with
 | [] -> []
 | hd :: tl -> f hd :: map f tl
val map : (𝝰 -> 𝝱) -> 𝝰 list -> 𝝱 list
let offset = 10 in
let myfun x = x + offset in
val myfun : int -> int
map myfun [1;8;22] = [11;18;32]

Higher-order functions

● Functions are first-class values
○ Can be used whenever a value is expected (i.e., as an expression)
○ Notably, can be passed around
○ Closure captures the environment

let rec map f lst = match lst with
 | [] -> []
 | hd :: tl -> f hd :: map f tl
val map : (𝝰 -> 𝝱) -> 𝝰 list -> 𝝱 list
let offset = 10 in
let myfun x = x + offset in
val myfun : int -> int
map myfun [1;8;22] = [11;18;32]

Extremely powerful
programming technique:
● general iterators
● implement

abstraction

The Story of Fold

● We’ve seen length and map
● We can also imagine:

The Story of Fold

● We’ve seen length and map
● We can also imagine:

○ sum [1; 5; 8] = 14

The Story of Fold

● We’ve seen length and map
● We can also imagine:

○ sum [1; 5; 8] = 14
○ product [1; 5; 8] = 40

The Story of Fold

● We’ve seen length and map
● We can also imagine:

○ sum [1; 5; 8] = 14
○ product [1; 5; 8] = 40
○ and [true; true; false] = false

The Story of Fold

● We’ve seen length and map
● We can also imagine:

○ sum [1; 5; 8] = 14
○ product [1; 5; 8] = 40
○ and [true; true; false] = false
○ or [true; true; false] = true

The Story of Fold

● We’ve seen length and map
● We can also imagine:

○ sum [1; 5; 8] = 14
○ product [1; 5; 8] = 40
○ and [true; true; false] = false
○ or [true; true; false] = true
○ filter (fun x -> x > 4) [1; 5; 8] = [5; 8]

The Story of Fold

● We’ve seen length and map
● We can also imagine:

○ sum [1; 5; 8] = 14
○ product [1; 5; 8] = 40
○ and [true; true; false] = false
○ or [true; true; false] = true
○ filter (fun x -> x > 4) [1; 5; 8] = [5; 8]
○ reverse [1; 5; 8] = [8; 5; 1]

The Story of Fold

● We’ve seen length and map
● We can also imagine:

○ sum [1; 5; 8] = 14
○ product [1; 5; 8] = 40
○ and [true; true; false] = false
○ or [true; true; false] = true
○ filter (fun x -> x > 4) [1; 5; 8] = [5; 8]
○ reverse [1; 5; 8] = [8; 5; 1]
○ mem 5 [1; 5; 8] = true

The Story of Fold

● We’ve seen length and map
● We can also imagine:

○ sum [1; 5; 8] = 14
○ product [1; 5; 8] = 40
○ and [true; true; false] = false
○ or [true; true; false] = true
○ filter (fun x -> x > 4) [1; 5; 8] = [5; 8]
○ reverse [1; 5; 8] = [8; 5; 1]
○ mem 5 [1; 5; 8] = true

How can we build
all of these?

The Story of Fold

● The fold operator comes from recursion theory (Kleene, 1952):

let rec fold f acc lst = match lst with
| [] -> acc
| hd :: tl -> fold f (f acc hd) tl

The Story of Fold

● The fold operator comes from recursion theory (Kleene, 1952):

let rec fold f acc lst = match lst with
| [] -> acc
| hd :: tl -> fold f (f acc hd) tl

val fold : ?

The Story of Fold

● The fold operator comes from recursion theory (Kleene, 1952):

let rec fold f acc lst = match lst with
| [] -> acc
| hd :: tl -> fold f (f acc hd) tl

val fold : (𝝰 -> 𝝱 -> 𝝰) -> 𝝰 -> 𝝱 list -> 𝝰

The Story of Fold

● The fold operator comes from recursion theory (Kleene, 1952):

let rec fold f acc lst = match lst with
| [] -> acc
| hd :: tl -> fold f (f acc hd) tl

val fold : (𝝰 -> 𝝱 -> 𝝰) -> 𝝰 -> 𝝱 list -> 𝝰
 f acc lst (fold f acc lst)

The Story of Fold

● The fold operator comes from recursion theory (Kleene, 1952):

let rec fold f acc lst = match lst with
| [] -> acc
| hd :: tl -> fold f (f acc hd) tl

val fold : (𝝰 -> 𝝱 -> 𝝰) -> 𝝰 -> 𝝱 list -> 𝝰
 f acc lst (fold f acc lst)

Note: acc type and return
type are the same!

The Story of Fold

● The fold operator comes from recursion theory (Kleene, 1952):

let rec fold f acc lst = match lst with
| [] -> acc
| hd :: tl -> fold f (f acc hd) tl

val fold : (𝝰 -> 𝝱 -> 𝝰) -> 𝝰 -> 𝝱 list -> 𝝰

● on the whiteboard, this example (f is +):

 f acc lst (fold f acc lst)

Let’s build things out of fold

● length lst = fold (fun acc elt -> ???) ? lst

Let’s build things out of fold

● length lst = fold (fun acc elt -> acc + 1) 0 lst

Let’s build things out of fold

● length lst = fold (fun acc elt -> acc + 1) 0 lst
● sum lst = fold (fun acc elt -> ???) ? lst

Let’s build things out of fold

● length lst = fold (fun acc elt -> acc + 1) 0 lst
● sum lst = fold (fun acc elt -> acc + elt) 0 lst

Let’s build things out of fold

● length lst = fold (fun acc elt -> acc + 1) 0 lst
● sum lst = fold (fun acc elt -> acc + elt) 0 lst
● product lst = fold (fun acc elt -> ???) ? lst

Let’s build things out of fold

● length lst = fold (fun acc elt -> acc + 1) 0 lst
● sum lst = fold (fun acc elt -> acc + elt) 0 lst
● product lst = fold (fun acc elt -> acc * elt) 1 lst

Let’s build things out of fold

● length lst = fold (fun acc elt -> acc + 1) 0 lst
● sum lst = fold (fun acc elt -> acc + elt) 0 lst
● product lst = fold (fun acc elt -> acc * elt) 1 lst
● and lst = fold (fun acc elt -> ???) ? lst

Let’s build things out of fold

● length lst = fold (fun acc elt -> acc + 1) 0 lst
● sum lst = fold (fun acc elt -> acc + elt) 0 lst
● product lst = fold (fun acc elt -> acc * elt) 1 lst
● and lst = fold (fun acc elt -> acc & elt) true lst

Let’s build things out of fold

● length lst = fold (fun acc elt -> acc + 1) 0 lst
● sum lst = fold (fun acc elt -> acc + elt) 0 lst
● product lst = fold (fun acc elt -> acc * elt) 1 lst
● and lst = fold (fun acc elt -> acc & elt) true lst

● think you can do or on your own?

Let’s build things out of fold

● length lst = fold (fun acc elt -> acc + 1) 0 lst
● sum lst = fold (fun acc elt -> acc + elt) 0 lst
● product lst = fold (fun acc elt -> acc * elt) 1 lst
● and lst = fold (fun acc elt -> acc & elt) true lst

● think you can do or on your own?
○ what about reverse?

Let’s build things out of fold, part 2

● reverse lst = fold (fun acc elt -> ???) ? lst

Let’s build things out of fold, part 2

● reverse lst = fold (fun acc elt -> acc @ [e]) [] lst

Let’s build things out of fold, part 2

● reverse lst = fold (fun acc elt -> acc @ [e]) [] lst
○ note types: (acc : 𝝰 list) (e : 𝝰)

Let’s build things out of fold, part 2

● reverse lst = fold (fun acc elt -> acc @ [e]) [] lst
○ note types: (acc : 𝝰 list) (e : 𝝰)

● filter keep_it lst = fold (fun acc elt -> ???) ? lst

Let’s build things out of fold, part 2

● reverse lst = fold (fun acc elt -> acc @ [e]) [] lst
○ note types: (acc : 𝝰 list) (e : 𝝰)

● filter keep_it lst = fold (fun acc elt -> if keep_it elt
then elt :: acc
else acc) [] lst

Let’s build things out of fold, part 2

● reverse lst = fold (fun acc elt -> acc @ [e]) [] lst
○ note types: (acc : 𝝰 list) (e : 𝝰)

● filter keep_it lst = fold (fun acc elt -> if keep_it elt
then elt :: acc
else acc) [] lst

● filter wanted lst = fold (fun acc elt -> ???) ? lst

Let’s build things out of fold, part 2

● reverse lst = fold (fun acc elt -> acc @ [e]) [] lst
○ note types: (acc : 𝝰 list) (e : 𝝰)

● filter keep_it lst = fold (fun acc elt -> if keep_it elt
then elt :: acc
else acc) [] lst

● filter wanted lst = fold (fun acc elt -> acc || wanted = elt) false lst

Let’s build things out of fold, part 2

● reverse lst = fold (fun acc elt -> acc @ [e]) [] lst
○ note types: (acc : 𝝰 list) (e : 𝝰)

● filter keep_it lst = fold (fun acc elt -> if keep_it elt
then elt :: acc
else acc) [] lst

● filter wanted lst = fold (fun acc elt -> acc || wanted = elt) false lst
○ note types: (acc : bool) (e : 𝝰)

Let’s build things out of fold, part 2

● reverse lst = fold (fun acc elt -> acc @ [e]) [] lst
○ note types: (acc : 𝝰 list) (e : 𝝰)

● filter keep_it lst = fold (fun acc elt -> if keep_it elt
then elt :: acc
else acc) [] lst

● filter wanted lst = fold (fun acc elt -> acc || wanted = elt) false lst
○ note types: (acc : bool) (e : 𝝰)

● Could we do map?
○ Recall: map (fun x -> x +10) [1;2] = [11;12]

Let’s build things out of fold, part 2

● reverse lst = fold (fun acc elt -> acc @ [e]) [] lst
○ note types: (acc : 𝝰 list) (e : 𝝰)

● filter keep_it lst = fold (fun acc elt -> if keep_it elt
then elt :: acc
else acc) [] lst

● filter wanted lst = fold (fun acc elt -> acc || wanted = elt) false lst
○ note types: (acc : bool) (e : 𝝰)

● Could we do map?
○ Recall: map (fun x -> x +10) [1;2] = [11;12]
○ Let’s do it together…

Let’s build things out of fold, part 3 (map)

let map myfun lst =
fold (fun acc elt -> (myfun ??? :: acc) ? lst

Let’s build things out of fold, part 3 (map)

let map myfun lst =
fold (fun acc elt -> (myfun elt) :: acc) [] lst

Let’s build things out of fold, part 3 (map)

let map myfun lst =
fold (fun acc elt -> (myfun elt) :: acc) [] lst

● Types of:
○ myfun : 𝝰 -> 𝝱
○ lst : 𝝰 list
○ acc : 𝝱 list
○ elt : 𝝰

Let’s build things out of fold, part 3 (map)

let map myfun lst =
fold (fun acc elt -> (myfun elt) :: acc) [] lst

● Types of:
○ myfun : 𝝰 -> 𝝱
○ lst : 𝝰 list
○ acc : 𝝱 list
○ elt : 𝝰

● Could we do sort?

Sorting examples

let langs = [“fortran”; “algol”; “c”] in
● sort (fun a b -> ???) langs = [“algol”; “c”; “fortran”]

Sorting examples

let langs = [“fortran”; “algol”; “c”] in
● sort (fun a b -> a < b) langs = [“algol”; “c”; “fortran”]

Sorting examples

let langs = [“fortran”; “algol”; “c”] in
● sort (fun a b -> a < b) langs = [“algol”; “c”; “fortran”]
● sort (fun a b -> ???) langs = [“fortran”; “c”; “algol”]

Sorting examples

let langs = [“fortran”; “algol”; “c”] in
● sort (fun a b -> a < b) langs = [“algol”; “c”; “fortran”]
● sort (fun a b -> a > b) langs = [“fortran”; “c”; “algol”]

Sorting examples

let langs = [“fortran”; “algol”; “c”] in
● sort (fun a b -> a < b) langs = [“algol”; “c”; “fortran”]
● sort (fun a b -> a > b) langs = [“fortran”; “c”; “algol”]
● sort (fun a b -> ???) langs = [“c”; “algol”; “fortran”]

Sorting examples

let langs = [“fortran”; “algol”; “c”] in
● sort (fun a b -> a < b) langs = [“algol”; “c”; “fortran”]
● sort (fun a b -> a > b) langs = [“fortran”; “c”; “algol”]
● sort (fun a b -> strlen a < strlen b) langs = [“c”; “algol”; “fortran”]

Sorting examples

let langs = [“fortran”; “algol”; “c”] in
● sort (fun a b -> a < b) langs = [“algol”; “c”; “fortran”]
● sort (fun a b -> a > b) langs = [“fortran”; “c”; “algol”]
● sort (fun a b -> strlen a < strlen b) langs = [“c”; “algol”; “fortran”]

● Recall Java’s Comparator interface
○ in this functional style, our implementations are much simpler!

Partial Application and Currying

let myadd x y = x + y
val myadd : int -> int -> int
myadd 3 5 = 8

Partial Application and Currying

let myadd x y = x + y
val myadd : int -> int -> int
myadd 3 5 = 8
let addtwo = myadd 2

Partial Application and Currying

let myadd x y = x + y
val myadd : int -> int -> int
myadd 3 5 = 8
let addtwo = myadd 2
● How do we know what this means? We use referential transparency!

Basically, just substitute it in.

Partial Application and Currying

let myadd x y = x + y
val myadd : int -> int -> int
myadd 3 5 = 8
let addtwo = myadd 2
● How do we know what this means? We use referential transparency!

Basically, just substitute it in.
val addtwo : int -> int
addtwo 77 = 79

Partial Application and Currying

let myadd x y = x + y
val myadd : int -> int -> int
myadd 3 5 = 8
let addtwo = myadd 2
● How do we know what this means? We use referential transparency!

Basically, just substitute it in.
val addtwo : int -> int
addtwo 77 = 79
● called Currying: “if you fix some arguments, you get a function of the

remaining arguments”

Course Announcements

● Don’t forget: PA1c1 due today
○ and PA1c2 (1 more language!) due Thursday
○ and PA1 (full, all four languages!) due next Monday

● Cool Reference Manual is assigned reading for Wednesday, too ;)
○ I certainly wouldn’t consider giving another quiz…

Course Announcements

