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● PA3 deadline is now Monday, April 14 AoE
○ I have also moved the PA4c1 deadline to 4/28

● PA4 leaderboard will go live (with your PA3 submissions so far) 
Sometime Soon™
○ recall that PA4 is due on the day of the final exam

■ which means I cannot grant extensions on it!
● There was a bug in the reference compiler's implementation of the 

in_string() builtin
○ new version of Cool (v1.40) released 
○ I will not test the difference between the two, so it’s okay to 

continue to use v1.39



Agenda

● Global constant folding
● Global liveness analysis

○ this analysis enables dead code elimination
● Interprocedural optimizations (and analysis)
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Review: Global Constant Folding
● We want to apply the same kinds of optimizations at the global 

level that we do at the local and regional levels
○ constant folding, DCE, etc.
○ “global” = an analysis of the entire control-flow graph for one 

method body
● To replace a use of x by a constant k we must know this 

correctness condition:
On every path to the use of x, the last assignment to x is x := k

● This correctness condition is not trivial to check
○  “All paths” includes paths around loops and through 

branches of conditionals
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Review: Dataflow Analysis
● We use a dataflow analysis to check the correctness condition

○ called “dataflow” analysis because it propagates information 
about how data moves through the control-flow graph

○ alternate view: it’s just another abstract interpretation
● Our dataflow analyses for enabling optimizations will be sound 

and conservative
○ i.e., we will not optimize when they say “I don’t know”

○ we can’t check the correctness condition directly because it is 
undecidable (as a direct corollary of Rice’s Theorem)

● Given global constant information, it is easy to decide whether 
or not to perform the optimization



Review: Global Constant Folding Abstraction

● To make the problem precise, we associate one of the following 
abstract values with X at every program point:
○ T (“top”)                 =   “don’t know if X is a constant”
○ constant c            =   “the last assignment to X was X = c”
○ 丄 (“bottom”)     =   “X has no value here”
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c = constant
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Get out a piece of paper. Fill in these blanks:

Recall:
T = “don’t know”
c = constant
丄 = unreachable

Global Constant Folding: Formalized

Next important question: 
how do we mechanically 
compute this information?



Key Idea of Dataflow Analysis

The analysis of a complicated program can be expressed as a 
combination of simple rules relating the change in information 

between adjacent statements
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Explanation:

● The idea is to “push” or “transfer” information from one statement 
to the next

● For each statement s, we compute information about the value of x 
immediately before and after s:
○ C

in
(x,s) = value of x before s 

○ C
out

(x,s) = value of x after s
Definition: a transfer function 
expresses the relationship 
between C

in
(x, s) and C

out
(x, s)

Key Idea of Dataflow Analysis



Transfer functions: rule 1

C
out

(x, x := c) = c if c is a constant



Transfer functions: rule 2

C
out

(x, s) = bottom if C
in

(x, s) = bottom

Recall bottom = 
“unreachable code”



Transfer functions: rule 3

C
out

(x, x := f(…)) = T



Transfer functions: rule 3

C
out

(x, x := f(…)) = T

This is a conservative 
approximation! f(...) 
might always return a 
constant, but we don’t 
even try!
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C
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Transfer functions: rule 4

C
out

(x, y := …) = C
in

(x, y := …) if x ≠ y

How hard is it to 
check if x ≠ y on all 
executions? (oh no)
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● Rules 1-4 relate the in of a statement to the out of the same 
statement 
○ they propagate information across statements

● We also need rules relating the out of one statement to the in of 
the successor statement
○ to propagate information forward along paths

● In the following rules, let statement s have immediate predecessor 
statements p1 , …, pn

Propagation between Statements
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out
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Transfer functions: rule 5

if C
out

(x, pi ) = T for some i, then C
in

(x, s) = T

If there’s any path 
on which we don’t 
know, then we 
don’t know at all
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Transfer functions: rule 6

if C
out

(x, pi ) = c and C
out

(x, pj ) = d and d ≠ c then C
in

 (x, s) = T

We don’t know 
which of the paths a 
given execution will 
take (so assume T)
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Transfer functions: rule 7

if C
out

(x, pi ) = c or bottom for all i, then C
in

(x, s) = c

If x has the same 
value (or bottom) 
on all input edges, it 
has that value in s



Transfer functions: rule 8

if C
out

(x, pi ) = bottom for all i, then C
in

(x, s) = bottom
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A Dataflow Analysis Algorithm

● For every entry point e to the program, set C
in

(x, e) = T
○ why top? Top models “we don’t know”, and we don’t know the 

inputs to the procedure.
● Set C

in
(x, s) = C

out
(x, s) = bottom everywhere else

● Repeat until all points satisfy rules 1-8: 
○ Pick s not satisfying rules 1-8 and update using the appropriate 

rule

This is a fixpoint (or fixed point) 
iteration algorithm. Such algorithms 
are characterized by a finite set of 
rules, which are applied until they 
“reach fixpoint”, which means that 
applying any rule produces no 
change.
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Why do we need bottom?

● To understand why we need to set non-entry points to bottom 
initially, consider a program with a loop.

● Because of cycles, all points must have values at all times during 
the analysis

● Intuitively, assigning some initial value allows the analysis to break 
cycles

● The initial value bottom means “we have not yet analyzed control 
reaching this point”



Another example: dealing with loops

Let’s do it on paper! 
Analyze the value of X.



Another example: dealing with loops

(We went through 
this answer on the 
whiteboard.)



Lattices & Orderings

● You may have observed that there is a natural order to the different 
abstract values in our dataflow analysis



Lattices & Orderings

● You may have observed that there is a natural order to the different 
abstract values in our dataflow analysis
○ (Most) locations start as bottom



Lattices & Orderings

● You may have observed that there is a natural order to the different 
abstract values in our dataflow analysis
○ (Most) locations start as bottom
○ Locations whose current value is bottom might become c or T



Lattices & Orderings

● You may have observed that there is a natural order to the different 
abstract values in our dataflow analysis
○ (Most) locations start as bottom
○ Locations whose current value is bottom might become c or T
○ Locations whose current value is c might become T

■ but never go back to bottom!



Lattices & Orderings

● You may have observed that there is a natural order to the different 
abstract values in our dataflow analysis
○ (Most) locations start as bottom
○ Locations whose current value is bottom might become c or T
○ Locations whose current value is c might become T

■ but never go back to bottom!
○ Locations whose current value is T never change
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This structure between values is a lattice (just like in AI!):

T

0 1-1 ……

bot



Lattices & Orderings

T

0 1-1

bot

……

Review of how to read a lattice:
● abstract values higher in the 

lattice are more general (e.g., T 
is true of more things than 0)

● easy to compute least upper 
bound: it’s the lowest common 
ancestor of two abstract values

This structure between values is a lattice (just like in AI!):
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Lattices (continued)

● least upper bound (“lub”) has useful properties:
○ monotonicity: implicitly captures that values only flow in one 

direction as the analysis progresses
○ we can rewrite rules 5-8 in our dataflow analysis using lub:

C
in

(x, s) = lub { C
out

(x, p) | p is a predecessor of s }lub is the reason dataflow 
analysis is an algorithm: 
because lub is monotonic, we 
only need to analyze each 
loop as many times as the 
lattice is tall
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Termination

● Let’s formalize the argument that our global constant folding 
analysis terminates
○ saying “repeat until nothing changes” doesn’t guarantee that 

eventually nothing changes, after all
● The use of lub explains why the algorithm terminates:

○ values start as bottom and only increase 
○ bottom can change to a constant, and a constant to T 
○ thus, C_(x, s) can change at most twice (= lattice height minus 

one)



Trivia Break: Music

BBC disc jockey John Peel said of this 1969 experimental rock album, 
"If there has been anything in the history of popular music which 
could be described as a work of art in a way that people who are 
involved in other areas of art would understand, then [this album] is 
probably that work." Its unconventional musical style, which includes 
polyrhythm, and polytonality, has given the album a reputation as one 
of the most challenging recordings in the 20th century musical canon. 
The album was recorded in a single six-hour session after the band 
had rehearsed it for eight months (!!) straight.

Name either the album or the band that created it.



Trivia Break: Art History
This early-20th-century avant-garde art movement that 

began in Paris revolutionized painting and the visual arts, 

and influenced artistic innovations in music, ballet, 

literature, and architecture. Its subjects are analyzed, 

broken up, and reassembled in an abstract form: instead of 

depicting objects from a single perspective, the artist 

depicts the subject from multiple perspectives to 

represent the subject in a greater context. Important 

artists in the movement include Pablo Picasso, Georges 

Braque, Jean Metzinger, Albert Gleizes, Robert Delaunay, 

Henri Le Fauconnier, Juan Gris, Fernand Léger, and others.
Picasso’s Girl with a Mandolin (Fanny Tellier)
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Liveness Analysis

● Next, we want to do global dead code elimination
○ To prove that removing a statement is safe, we use a liveness 

analysis that computes the set of variables that are live at each 
program point

● Formally, we say that a variable x is live at statement s if:
○ There exists a statement s’ that uses x 
○ There is a path from s to s’
○ That path has no intervening assignment to x
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Liveness Analysis

● We can express liveness in terms of information transferred 
between adjacent statements, just as in constant propagation
○ Liveness is simpler than constant propagation, since it is a 

boolean property (true or false)
● I will show two different formalisms for liveness in these slides:

○ An “abstract interpretation”-like one (transfer functions)
○ A “gen-kill”-style system of equations

● These formalisms are equally valid. You can use which makes the 
most sense to you when you’re implementing PA4c1/on exams/etc
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Liveness Analysis: Rule 1

L
in

(x,s) = true if s refers to x on the rhs



Liveness Analysis: Rule 2

L
in

(x, x := e) = false if e does not refer to x



Liveness Analysis: Rule 3

L
in

(x, s) = L
out

(x, s) if s does not refer to x



Liveness Analysis: Rule 4

L
out

(x, p) = ∨ { L
in

(x, s) | s is a successor of p }



Liveness Analysis: Algorithm

● Let all L_(...) = false initially
● Repeat until all statements s satisfy rules 1-4 :

○ Pick s where one of rules 1-4 does not hold and update using 
the appropriate rule



Liveness Analysis: Example

(on the whiteboard)
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Liveness Analysis: Dataflow Equations

● Alternate formalism: all dataflow analyses involve four sets of 
facts about each basic block b:
○ IN(b) = set of facts that are true on entry to b
○ OUT(b) = set of facts that are true on exit from b
○ GEN(b) = set of facts created and not killed during b
○ KILL(b) = set of facts killed during b

● These sets are related by the equation:

OUT(b) = GEN(b) ∪ (IN(b) – KILL(b))

Alternative algorithm for dataflow 
analysis: solve this dataflow 
equation iteratively for all blocks 
until all sets reach fixpoint
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Liveness Analysis: Dataflow Equations

● To use this framework to model liveness, we need to define these 
four sets:
○ IN(b) = live variables on entry to b
○ OUT(b) = live variables on exit from b
○ GEN(b) = variables used by b
○ KILL(b) = variables defined by b

● Why does GEN = “used variables” and KILL = “defined variables”?
○ a variable becomes live because of a use
○ a variable is no longer live because of a definition
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Dataflow Equations vs Transfer Functions

● Either way of thinking about dataflow analysis is equally valid
○ I prefer transfer functions, but you might prefer dataflow 

equations
○ We can easily prove that anything that we can express with 

one is can be expressed with the other
● There is a much more in-depth treatment of dataflow equations 

(including how to use them for liveness analysis) in EaC chapter 9. 
○ If you’re confused, start there
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● Liveness analysis is useful for many things in a compiler, not just 
dead code elimination

● Some examples of other uses:
○ Register allocation: only live variables need a register
○ Detecting uses of uninitialized variables: if live at declaration 

(before initialization) then it might be used uninitialized
○ Improve SSA construction: only need Φ-functions for variables 

that are live in a block (later)
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Liveness Analysis: Summary

● A variable is live at a program point iff there is any path from that 
program point to a use of the variable along which the variable is 
not redefined

● Two ways to do liveness analysis (equally-valid!):
○ transfer functions
○ dataflow equations

● Liveness analysis has lots of uses:
○ DCE, register allocation, detecting uses of uninitialized 

variables, etc.
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● Dividing the program up into procedures give one big benefit: 
separate compilation
○ we can also optimize each procedure independently using 

global analyses like those we’ve discussed today
● However, procedure calls also introduce significant overhead

○ pre-call/post-return bookkeeping, prologue/epilogue, jump
● Calls are also hard to reason about in global optimizations

○ compiler doesn’t know what will happen inside the call
● These downsides of procedure calls motivate interprocedural (or 

“whole-program”) optimizations that span procedure boundaries

Today we will take a brief look at 
two interprocedural optimizations:
● inlining
● tail call optimization
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Interprocedural Optimizations: Inlining

● Consider the following procedure:

int add(int x, int y):
return x + y

● Imagine generating code for a call to this procedure:
○ the actual procedure body is only one instruction
○ the prologue and epilogue dominate, we may have to spill 

registers at call sites, etc.
● Key idea of inlining: for such a procedure call, replace the call with 

the procedure’s body
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● Inlining is useful when:
○ the body of the procedure to be inlined is much shorter than 

the prologue/epilogue
○ inlining enables specialization (e.g., arguments are constants)
○ inlining enables other optimizations (e.g., part of the body is 

dead at this particular call site)
● Inlining also has risks:

○ increases code size (may overflow instruction cache)
○ increases register pressure

Note similar benefits and risks to 
loop unrolling. Deciding whether 
to inline is similarly complicated!
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Inlining: Common Heuristics

● In practice, production compilers will use heuristics to decide 
when/if to inline, such as:
○ Is this procedure a leaf in the call graph?

■ That is, does it not call any other procedures itself?
○ Is the callee procedure significantly smaller than the calling 

procedure?
○ Static call count: the number of distinct sites that call the 

procedure. 
■ Any procedure called just once is a good inlining candidate.

○ Profile data, such as fraction of execution time (if available)
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Interprocedural Optimizations: Tail Calls

● Consider a procedure that calls another procedure and then 
immediately returns, like this example:

int foo(...):
...
return bar(...)

● What will happen as bar returns?
○ We will execute the epilogues of foo and bar in sequence, with 

no intervening instructions
■ Including many redundant operations (e.g., resetting %rsp)
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● Tail-call elimination is an interprocedural optimization that allows a 
function called as the last instruction in a procedure to return to the 
calling procedure’s caller directly
○ This eliminates redundant operations in the epilogue

● This optimization is most important for tail-recursive procedures 
that call themselves as the last operation in their body
○ e.g., imagine a naive Fibonacci implementation
○ Tail-call elimination often reduces asymptotic stack space 

requirements from linear to constant for tail-recursive calls
● Functional languages practically require tail-call elimination
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Interprocedural Optimizations: Issues

● The biggest difficulty in interprocedural optimization is 
maintaining support for separate compilation
○ Traditional “compilation unit” is a procedure or file

● If all of the code is definitely available, it suffices to track 
dependencies between procedures from an optimization 
perspective, and then re-optimize whenever a dependent 
procedure changes

● Alternatively, we can defer interprocedural optimization until link 
time, when a linker combines the object files from each compilation 
unit into a single executable. We’ll talk more about this later.



Course Announcements

● PA3 deadline is now Monday, April 14 AoE
○ I have also moved the PA4c1 deadline to 4/28

● PA4 leaderboard will go live (with your PA3 submissions so far) 
Sometime Soon™
○ recall that PA4 is due on the day of the final exam

■ which means I cannot grant extensions on it!
● There was a bug in the reference compiler's implementation of the 

in_string() builtin
○ new version of Cool (v1.40) released 
○ I will not test the difference between the two, so it’s okay to 

continue to use v1.39


