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e Werecently fixed a bug in the reference compiler’s x86-64
module. Only use Cool version 1.39 for compiling to x86.
o There will be an extra credit question on the midterm asking
why | had to do this, if you want to do a comparison.
o | will also award extra credit if you can find another bug in the
reference compiler
e Don'’t forget thereis a midterm in this class on Wednesday!
o Review session: tonight at 5pm (virtually)
o Extra office half-hours tomorrow at 10am, 4:30pm
e Hopefully you started PA3c3 over break
o itsduedateis



Agenda

e Lasttime, all the way before the break:
o Stack machine basics
m accumulator, stack pointer
o Stack discipline, calling convention for our stack machine
m with a bit of optimization thrown in to give you a taste of
the idea
e Today:
Quick review
Finish basics of stack machine codegen (i.e., variables, temps)
Object layout and its interactions with subtyping
Dispatch tables/vtables
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e A stack machine maintains a stack of values for intermediate

results _
o all operations read their inpu

o toreduce memory usage, kee push ri
special accumulator register

e Itiscritical that the stackispres{  popt1
subexpressions addr1<-t1r1

o thisletsuswrite a coTcETTTCTTToO
e Lasttime, we saw how to generate Cool-ASM using a stack
machine for arithmetic expressions (add/subtract), if, and

function calls
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Code Generation: Variables

e Variable references are the last construct
e The “variables” of a function are just its parameters
o Theyareallinthe AR
o Pushed by the caller
e Problem: because the stack grows when intermediate results are
saved, the variables are not at a fixed offset from sp
o Challenge question: what are they at a fixed offset from?
o Answer: the frame pointer
m Always points to the return address on the stack
e =thevalue of sp on function entry
m Itdoesn’'t move => args on the stack are at a fixed offset
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Code Generation: Variables

e Example: For afunction def f(xl, x2) = e the activation and frame
pointer are set up as follows:

SP

FP

X

X4

old FP

)

|

high
addresses

X, (first parameter) is at fp + 2
X, (second parameter)isatfp+ 1
Thus:

Id r1 <- fp[Zz]

where z=n+1-i
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Summary

The activation record must be with the code
generator
Code generation can be done by recursive traversal of the AST
As you write your compiler, we recommend starting with a stack
machine (simpler!)
o ./cool —asmgenerates Cool-ASM stack machine code for
Cool
m use this to help you with PA3!
Production compilers do different things:

o keep as many values as possible in registers, etc
o save this stuff for PA4
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Temporaries

e The stack machine code layout we've
described so far has activation records
and intermediate results interleaved on
the stack.

o Advantage: Very simple code
generation (great for PA3)
o Disadvantage: Very slow code (bad
for PA4)
m Storing and loading temporaries
requires a store/load and sp
adjustment

AR

Intermediates

AR

Intermediates
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Temporaries: A Better Way

e l|dea: Keep temporaries inthe AR
o Creates work for us: the code generator must
in the AR for each temporary
o Therefore, we need to how many temporaries there
are!
e |nother words, our compiler must determine:
o What intermediate values are placed on the stack?
o How many slots are needed in the AR to hold these values?
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Temporaries: How Many?

e Let NT(e) = number of temps
needed to evaluate e
e Example:NT(e, +e,)
o Needs at least as many
temporaries as NT(e,)
o Needs at least as many
temporaries as NT(e,) + 1
e Insight: Space used for
temporaries in e, can be reused
for temporariesine,

pushril

pop til
addrl<-tir1l
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Temporaries: The NumTemps Equations
o NT(e, +e)=max(NT(e,), 1+NT(e,)))
o NT(e,-e,)=max(NT(e, ), 1+NT(e 2))
e NT(ife, =e, then e3elsee)

max(NT(el) 1+NT(e,),NT(e,),N

o NT(id(e,,....e))= max(NT( s N T(e

n

e NT(int)=0

T(e,)
)

n

* NTlid)=0 [In class exercise: what is NT(def fib(x) =

if x=1thenOelse
if x=2then 1
\_ else fib(x - 1) + fib(x - 2))?
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Revised AR

e For afunction definition f(xl, xn) = e the AR has
n + NT(e) + 2elements(so far):

O

O
O
O

N arguments

NT(e) locations for intermediate results

Return address
Frame pointer

high addresses l

SP

FP
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Revised Code Generation

e Code generation must know how many temporaries are in
use at each point

e Addanew argument to code generation: the position of the
next available temporary:

: generate code for e and use temporaries
whose address is (fp - n) or lower
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Revised Code Generation: +

Old: New:
cgen(e, +e)) = cgen(e, +e,,nt) =
cgen(e,) cgen(e,, nt)
pushril st fp[-nt] <-r1l
cgen(e,) cgen(e,,nt+1)
pop t1 Ild temp <- fp[-nt]
addrl<-tir1 addri<-tir1l

Where are the savings?
(Hint: “push” is more expensive

than it looks...)
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Notes: Temporaries

e Thetemporary areais used like a small, fixed-size stack

e Exercise that might help if you are struggling with PA3c3:
Write out for other constructs

e Hint: on function entry, you'll have to increment something
by NT(e)

o ..andon function exit, decrement it ...



Trivia Break: ??
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e Theremainder of today will be spent on two primary topics:
o object layout in object-oriented languages (i.e.,
subclasses)
o dynamic dispatch
e These are both tricky because of the Liskov substitution
principle: If B is a subclass of A, then an object of class B can
be used wherever an object of class A is expected
o This means that code in class A must work unmodified
on an object of class B
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Object Layout

e AnobjectislikeastructinC
o Thereference foo.fieldis anindex into afoo struct at an
offset corresponding to field
e Objectsin Cool are implemented this way
o Objects arelaid outin
o FEach attribute stored at a fixed offset in object
o When amethod is invoked, the object becomes self and
the fields are the object’s attributes
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Class tag (or “type tag”) is

araw integer

e |dentifies class of
the object (Int=1,
Bool=2,...)
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e The first three words of each Cool object contains header

information:

Offset

Class Type Tag

0

Object Size

\

1
\

Object size is also a raw

integer

e Size of the objectin
words
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e The first three words of each Cool object contains header
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Class Type Tag

Object Size

Dispatch / Vtable Pointer

Offset

= O

N

Dispatch pointer (or vtable
pointer) is a pointer to a
table of methods

e Moreon this later




Cool Object Layout

e The first three words of each Cool object contains header

information:

Offset

Class Type Tag 0

Object Size 1

Dispatch / Vtable Pointer 2

Attribute 1

ribute -~ 3

Attribute 2 BN

Attributes are laid out in
subsequent slots
e Note contiguous
layout
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Cool Object Layout

e The first three words of each Cool object contains header

information:
Offset

@)

Class Type Tag /Note thisis a convention\

that ,butitis
similar to how Java and
C++ lay things out. For
example, you could swap
\#1 and #2 without loss. /

Object Size

Dispatch / Vtable Pointer

Attribute 1

A W N -

Attribute 2
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L

Class B inherits A {
b: Int <- 2;
f(): Int{a};
g():Int{a<-a-b};
L

Class C inherits A {
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classes Band C
e All methodsin all classes refer to a

N

~

/




Cool Object Layout: Example

Class A{ Class C inherits A {
a: Int<-0; c:Int<-3;
d: Int <- 1; h(): Int{a<-a*c}
f():Int{a<-a+d}; };
$ /I'hings to note: \
Class B inherits A{ ° g’;tsr;te)g’lcgezsdagd d are inherited by
b: Int <- 2;

e All methodsin all classes refer to a
f(): Int{a}; e For A methods to work correctly in A,
g():Int{a<-a-b} B, and C objects, attribute a must be

X \_inthesame “place” ineachobject ~ /
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Object Layout: Key Point

e Key Observation: Given a layout for class A, a layout for
subclass B can be defined by extending the layout of A with
additional slots for the additional attributes of B

o (i.e., append new fields at the bottom)

o leaves the layout of A unchanged (B is an extension)

o thisiswhere the “extends” keyword in Java etc comes
from



Cool Object Layout: Example w/ Picture

Class A{ Class C inherits A {
a: Int <-0; c:Int <-3;
d: Int <- 1; h():Int{a<-a*c}

f():Int{a<-a+d}; J; Class |4 |8 |c
}: %\

0 (tag) Atag |Btag |Ctag

Class B inherits A { 1(size) |5 6 6
b: Int <- 2; 2 (vtable) |* * *
f() Int { d }; 3 (attr#l) |a a a
g():Int{a<-a-b}; 4. d d d

}; 5 b c
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Object Layout: Subclass Invariant

e The offset for an attribute is the

subclasses

in a class and all of its

o This choice allows any method defined for an A, to be
used on asubclass A,
m without any change to the implementation!

e ConsiderlayoutforA <. .A <A <A

Header

A1 attributes

A2 - A1 attributes

A3 - A2 attributes

f

7

N

A, object
- A, object

A, object

Challenge question:
what about multiple

Jnheritance, asin C++?

~
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Cool Object Layout: Dynamic Dispatch

Class A{ Class C inherits A {
a: Int<-0; c:Int<-3;
d: Int <- 1; h(): Int{a<-a*c}
L
L
Class B inherits A {

b: Int <- 2 [Consider and J
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Cool Object Layout: Dynamic Dispatch

e Consider e.g()
o greferstomethodinBifeisaB

e Consider e.f ()
o T referstomethodinAif fisan Aor C(inherited in the

case of C)

o T referstomethod in B for a B object

e Thereisacorrespondence here: the implementation of
methods and dynamic dispatch strongly resembles the
implementation of attributes
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Cool Object Layout: Dispatch Tables

e Assumption: every class has a fixed set of methods (including
inherited methods)
e Adispatch table (or virtual function table or vtable) indexes
these methods
o Avtableis an array of method entry points
m Thus,avtableis an array of function pointers.
e A methodflives at a fixed offset in the dispatch table for a
class
o this works exactly the same way that attributes do
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Class

Offset

f_A

f_B

f_A




Cool Object Layout: Dispatch Table Example

e Thedispatch table for class
A has only 1 method

Class

Offset

f_A

f_B

f_A




Cool Object Layout: Dispatch Table Example

e Thedispatch table for class
A has only 1 method

e ThetablesforBandC
extend the table for A with
more methods

Class

Offset

f_A

f_B

f_A




Cool Object Layout: Dispatch Table Example

The dispatch table for class
A has only 1 method

The tables for Band C
extend the table for A with
more methods

Because methods can be
overridden, the method for
fis not the samein every
class, but is always at the
same offset

o (i.e., offset O here)

Class | A B C
Offset
0 f A fB f_A
1 g h
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Cool Object Layout: Using Dispatch Tables

e Thedispatch pointer in an object of class X points to the dispatch
table for class X
o i.e., all objects of class X
e Every method f of class X is assigned an offset 0. in the dispatch
table at compile time
e Toimplement adynamicdispatche.f () we:
o Evaluate e, obtaining an object x
o Find D by reading the dispatch-table field of x
o CallD[0.](x)
m Disthedispatch table for x
m Inthecall, self is bound to x (why?)
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Cool Object Layout: Dyn. Dispatch Codegen

e Cgenforobjexp.mname(argl):

push self

push fp

cgen(argl)

pushril : push argl

cgen(objexp)

bz r1 dispatch_on_void_error

pushril : will be “self” for callee

Id temp<-ri[2] : temp <- vtable

Id temp <- temp[X] : X is offset of mname in vtables
: for objects of typeof(objexp)

call temp

pop fp



Course Announcements

e Werecently fixed a bug in the reference compiler’s x86-64
module. Only use Cool version 1.39 for compiling to x86.
o There will be an extra credit question on the midterm asking
why | had to do this, if you want to do a comparison.
o | will also award extra credit if you can find another bug in the
reference compiler
e Don'’t forget thereis a midterm in this class on Wednesday!
o Review session: tonight at 5pm (virtually)
o Extra office half-hours tomorrow at 10am, 4:30pm
e Hopefully you started PA3c3 over break
o itsduedateis



