
Code Generation
Martin Kellogg

Course Announcements

● We recently fixed a bug in the reference compiler’s x86-64
module. Only use Cool version 1.39 for compiling to x86.
○ There will be an extra credit question on the midterm asking

why I had to do this, if you want to do a comparison.
○ I will also award extra credit if you can find another bug in the

reference compiler

Course Announcements

● We recently fixed a bug in the reference compiler’s x86-64
module. Only use Cool version 1.39 for compiling to x86.
○ There will be an extra credit question on the midterm asking

why I had to do this, if you want to do a comparison.
○ I will also award extra credit if you can find another bug in the

reference compiler
● Don’t forget there is a midterm in this class on Wednesday!

○ Review session: tonight at 5pm (virtually)
○ Extra office half-hours tomorrow at 10am, 4:30pm

Course Announcements

● We recently fixed a bug in the reference compiler’s x86-64
module. Only use Cool version 1.39 for compiling to x86.
○ There will be an extra credit question on the midterm asking

why I had to do this, if you want to do a comparison.
○ I will also award extra credit if you can find another bug in the

reference compiler
● Don’t forget there is a midterm in this class on Wednesday!

○ Review session: tonight at 5pm (virtually)
○ Extra office half-hours tomorrow at 10am, 4:30pm

● Hopefully you started PA3c3 over break
○ its due date is one week from today

Agenda

● Last time, all the way before the break:
○ Stack machine basics

■ accumulator, stack pointer
○ Stack discipline, calling convention for our stack machine

■ with a bit of optimization thrown in to give you a taste of
the idea

● Today:
○ Quick review
○ Finish basics of stack machine codegen (i.e., variables, temps)
○ Object layout and its interactions with subtyping
○ Dispatch tables/vtables

Agenda

● Last time, all the way before the break:
○ Stack machine basics

■ accumulator, stack pointer
○ Stack discipline, calling convention for our stack machine

■ with a bit of optimization thrown in to give you a taste of
the idea

● Today:
○ Quick review
○ Finish basics of stack machine codegen (i.e., variables, temps)
○ Object layout and its interactions with subtyping
○ Dispatch tables/vtables

Review: Stack Machine Basics

Review: Stack Machine Basics

● A stack machine maintains a stack of values for intermediate
results

Review: Stack Machine Basics

● A stack machine maintains a stack of values for intermediate
results
○ all operations read their inputs off of the stack

Review: Stack Machine Basics

● A stack machine maintains a stack of values for intermediate
results
○ all operations read their inputs off of the stack
○ to reduce memory usage, keep the top of the stack in a

special accumulator register

Review: Stack Machine Basics

● A stack machine maintains a stack of values for intermediate
results
○ all operations read their inputs off of the stack
○ to reduce memory usage, keep the top of the stack in a

special accumulator register
● It is critical that the stack is preserved across the evaluation of

subexpressions

Review: Stack Machine Basics

● A stack machine maintains a stack of values for intermediate
results
○ all operations read their inputs off of the stack
○ to reduce memory usage, keep the top of the stack in a

special accumulator register
● It is critical that the stack is preserved across the evaluation of

subexpressions
○ this lets us write a recursive descent code generator

Review: Stack Machine Basics

● A stack machine maintains a stack of values for intermediate
results
○ all operations read their inputs off of the stack
○ to reduce memory usage, keep the top of the stack in a

special accumulator register
● It is critical that the stack is preserved across the evaluation of

subexpressions
○ this lets us write a recursive descent code generator

● Last time, we saw how to generate Cool-ASM using a stack
machine for arithmetic expressions (add/subtract), if, and
function calls

Review: Stack Machine Basics

● A stack machine maintains a stack of values for intermediate
results
○ all operations read their inputs off of the stack
○ to reduce memory usage, keep the top of the stack in a

special accumulator register
● It is critical that the stack is preserved across the evaluation of

subexpressions
○ this lets us write a recursive descent code generator

● Last time, we saw how to generate Cool-ASM using a stack
machine for arithmetic expressions (add/subtract), if, and
function calls

cgen(e
1

 + e
2

) =
cgen(e

1
)

push r1
cgen(e

2
) ;; e2 now in r1

pop t1
add r1 <- t1 r1

Code Generation: Variables

● Variable references are the last construct

Code Generation: Variables

● Variable references are the last construct
● The “variables” of a function are just its parameters

Code Generation: Variables

● Variable references are the last construct
● The “variables” of a function are just its parameters

○ They are all in the AR

Code Generation: Variables

● Variable references are the last construct
● The “variables” of a function are just its parameters

○ They are all in the AR
○ Pushed by the caller

Code Generation: Variables

● Variable references are the last construct
● The “variables” of a function are just its parameters

○ They are all in the AR
○ Pushed by the caller

● Problem: because the stack grows when intermediate results are
saved, the variables are not at a fixed offset from sp

Code Generation: Variables

● Variable references are the last construct
● The “variables” of a function are just its parameters

○ They are all in the AR
○ Pushed by the caller

● Problem: because the stack grows when intermediate results are
saved, the variables are not at a fixed offset from sp
○ Challenge question: what are they at a fixed offset from?

Code Generation: Variables

● Variable references are the last construct
● The “variables” of a function are just its parameters

○ They are all in the AR
○ Pushed by the caller

● Problem: because the stack grows when intermediate results are
saved, the variables are not at a fixed offset from sp
○ Challenge question: what are they at a fixed offset from?
○ Answer: the frame pointer

Code Generation: Variables

● Variable references are the last construct
● The “variables” of a function are just its parameters

○ They are all in the AR
○ Pushed by the caller

● Problem: because the stack grows when intermediate results are
saved, the variables are not at a fixed offset from sp
○ Challenge question: what are they at a fixed offset from?
○ Answer: the frame pointer

■ Always points to the return address on the stack
● = the value of sp on function entry

Code Generation: Variables

● Variable references are the last construct
● The “variables” of a function are just its parameters

○ They are all in the AR
○ Pushed by the caller

● Problem: because the stack grows when intermediate results are
saved, the variables are not at a fixed offset from sp
○ Challenge question: what are they at a fixed offset from?
○ Answer: the frame pointer

■ Always points to the return address on the stack
● = the value of sp on function entry

■ It doesn’t move => args on the stack are at a fixed offset

Code Generation: Variables

● Example: For a function def f(x
1

, x
2

) = e the activation and frame
pointer are set up as follows:

Code Generation: Variables

● Example: For a function def f(x
1

, x
2

) = e the activation and frame
pointer are set up as follows:

Code Generation: Variables

● Example: For a function def f(x
1

, x
2

) = e the activation and frame
pointer are set up as follows:

● x
1

 (first parameter) is at fp + 2

Code Generation: Variables

● Example: For a function def f(x
1

, x
2

) = e the activation and frame
pointer are set up as follows:

● x
1

 (first parameter) is at fp + 2
● x

2
 (second parameter) is at fp + 1

Code Generation: Variables

● Example: For a function def f(x
1

, x
2

) = e the activation and frame
pointer are set up as follows:

● x
1

 (first parameter) is at fp + 2
● x

2
 (second parameter) is at fp + 1

● Thus:

cgen(x
i
) =

ld r1 <- fp[z]

Code Generation: Variables

● Example: For a function def f(x
1

, x
2

) = e the activation and frame
pointer are set up as follows:

● x
1

 (first parameter) is at fp + 2
● x

2
 (second parameter) is at fp + 1

● Thus:

cgen(x
i
) =

ld r1 <- fp[z]

● where z ≈ n+1 - i

Summary

Summary

● The activation record must be designed together with the code
generator

Summary

● The activation record must be designed together with the code
generator

● Code generation can be done by recursive traversal of the AST

Summary

● The activation record must be designed together with the code
generator

● Code generation can be done by recursive traversal of the AST
● As you write your compiler, we recommend starting with a stack

machine (simpler!)

Summary

● The activation record must be designed together with the code
generator

● Code generation can be done by recursive traversal of the AST
● As you write your compiler, we recommend starting with a stack

machine (simpler!)
○ ./cool –asm generates Cool-ASM stack machine code for

Cool
■ use this to help you with PA3!

Summary

● The activation record must be designed together with the code
generator

● Code generation can be done by recursive traversal of the AST
● As you write your compiler, we recommend starting with a stack

machine (simpler!)
○ ./cool –asm generates Cool-ASM stack machine code for

Cool
■ use this to help you with PA3!

● Production compilers do different things:

Summary

● The activation record must be designed together with the code
generator

● Code generation can be done by recursive traversal of the AST
● As you write your compiler, we recommend starting with a stack

machine (simpler!)
○ ./cool –asm generates Cool-ASM stack machine code for

Cool
■ use this to help you with PA3!

● Production compilers do different things:
○ keep as many values as possible in registers, etc

Summary

● The activation record must be designed together with the code
generator

● Code generation can be done by recursive traversal of the AST
● As you write your compiler, we recommend starting with a stack

machine (simpler!)
○ ./cool –asm generates Cool-ASM stack machine code for

Cool
■ use this to help you with PA3!

● Production compilers do different things:
○ keep as many values as possible in registers, etc
○ save this stuff for PA4

Temporaries

Temporaries

● The stack machine code layout we've
described so far has activation records
and intermediate results interleaved on
the stack.

Temporaries

● The stack machine code layout we've
described so far has activation records
and intermediate results interleaved on
the stack.
○ Advantage: Very simple code

generation (great for PA3)

Temporaries

● The stack machine code layout we've
described so far has activation records
and intermediate results interleaved on
the stack.
○ Advantage: Very simple code

generation (great for PA3)
○ Disadvantage: Very slow code (bad

for PA4)
■ Storing and loading temporaries

requires a store/load and sp
adjustment

Temporaries: A Better Way

● Idea: Keep temporaries in the AR

Temporaries: A Better Way

● Idea: Keep temporaries in the AR
○ Creates work for us: the code generator must assign space

in the AR for each temporary

Temporaries: A Better Way

● Idea: Keep temporaries in the AR
○ Creates work for us: the code generator must assign space

in the AR for each temporary
○ Therefore, we need to know how many temporaries there

are!

Temporaries: A Better Way

● Idea: Keep temporaries in the AR
○ Creates work for us: the code generator must assign space

in the AR for each temporary
○ Therefore, we need to know how many temporaries there

are!
● In other words, our compiler must determine:

Temporaries: A Better Way

● Idea: Keep temporaries in the AR
○ Creates work for us: the code generator must assign space

in the AR for each temporary
○ Therefore, we need to know how many temporaries there

are!
● In other words, our compiler must determine:

○ What intermediate values are placed on the stack?

Temporaries: A Better Way

● Idea: Keep temporaries in the AR
○ Creates work for us: the code generator must assign space

in the AR for each temporary
○ Therefore, we need to know how many temporaries there

are!
● In other words, our compiler must determine:

○ What intermediate values are placed on the stack?
○ How many slots are needed in the AR to hold these values?

Temporaries: How Many?

● Let NT(e) = number of temps
needed to evaluate e

Temporaries: How Many?

● Let NT(e) = number of temps
needed to evaluate e

● Example: NT(e
1

 + e
2

)
cgen(e

1
 + e

2
) =

cgen(e
1

)
push r1
cgen(e

2
) ;; e2 now in r1

pop t1
add r1 <- t1 r1

Temporaries: How Many?

● Let NT(e) = number of temps
needed to evaluate e

● Example: NT(e
1

 + e
2

)
○ Needs at least as many

temporaries as NT(e
1

)

cgen(e
1

 + e
2

) =
cgen(e

1
)

push r1
cgen(e

2
) ;; e2 now in r1

pop t1
add r1 <- t1 r1

Temporaries: How Many?

● Let NT(e) = number of temps
needed to evaluate e

● Example: NT(e
1

 + e
2

)
○ Needs at least as many

temporaries as NT(e
1

)
○ Needs at least as many

temporaries as NT(e
2

) + 1

cgen(e
1

 + e
2

) =
cgen(e

1
)

push r1
cgen(e

2
) ;; e2 now in r1

pop t1
add r1 <- t1 r1

Temporaries: How Many?

● Let NT(e) = number of temps
needed to evaluate e

● Example: NT(e
1

 + e
2

)
○ Needs at least as many

temporaries as NT(e
1

)
○ Needs at least as many

temporaries as NT(e
2

) + 1
● Insight: Space used for

temporaries in e
1

 can be reused
for temporaries in e

2

cgen(e
1

 + e
2

) =
cgen(e

1
)

push r1
cgen(e

2
) ;; e2 now in r1

pop t1
add r1 <- t1 r1

Temporaries: The NumTemps Equations

● NT(e
1

 + e
2

) = max(NT(e
1

), 1 + NT(e
2

))

Temporaries: The NumTemps Equations

● NT(e
1

 + e
2

) = max(NT(e
1

), 1 + NT(e
2

))
● NT(e

1
 - e

2
) = max(NT(e

1
), 1 + NT(e

2
))

Temporaries: The NumTemps Equations

● NT(e
1

 + e
2

) = max(NT(e
1

), 1 + NT(e
2

))
● NT(e

1
 - e

2
) = max(NT(e

1
), 1 + NT(e

2
))

● NT(if e
1

 = e
2

 then e
3

 else e
4

) =
max(NT(e

1
), 1 + NT(e

2
), NT(e

3
), NT(e

4
))

Temporaries: The NumTemps Equations

● NT(e
1

 + e
2

) = max(NT(e
1

), 1 + NT(e
2

))
● NT(e

1
 - e

2
) = max(NT(e

1
), 1 + NT(e

2
))

● NT(if e
1

 = e
2

 then e
3

 else e
4

) =
max(NT(e

1
), 1 + NT(e

2
), NT(e

3
), NT(e

4
))

● NT(id(e
1

, …, e
n
)) = max(NT(e

1
), …, NT(e

n
))

Temporaries: The NumTemps Equations

● NT(e
1

 + e
2

) = max(NT(e
1

), 1 + NT(e
2

))
● NT(e

1
 - e

2
) = max(NT(e

1
), 1 + NT(e

2
))

● NT(if e
1

 = e
2

 then e
3

 else e
4

) =
max(NT(e

1
), 1 + NT(e

2
), NT(e

3
), NT(e

4
))

● NT(id(e
1

, …, e
n
)) = max(NT(e

1
), …, NT(e

n
))

● NT(int) = 0

Temporaries: The NumTemps Equations

● NT(e
1

 + e
2

) = max(NT(e
1

), 1 + NT(e
2

))
● NT(e

1
 - e

2
) = max(NT(e

1
), 1 + NT(e

2
))

● NT(if e
1

 = e
2

 then e
3

 else e
4

) =
max(NT(e

1
), 1 + NT(e

2
), NT(e

3
), NT(e

4
))

● NT(id(e
1

, …, e
n
)) = max(NT(e

1
), …, NT(e

n
))

● NT(int) = 0
● NT(id) = 0

Temporaries: The NumTemps Equations

● NT(e
1

 + e
2

) = max(NT(e
1

), 1 + NT(e
2

))
● NT(e

1
 - e

2
) = max(NT(e

1
), 1 + NT(e

2
))

● NT(if e
1

 = e
2

 then e
3

 else e
4

) =
max(NT(e

1
), 1 + NT(e

2
), NT(e

3
), NT(e

4
))

● NT(id(e
1

, …, e
n
)) = max(NT(e

1
), …, NT(e

n
))

● NT(int) = 0
● NT(id) = 0

In class exercise: what is NT(def fib(x) =
if x = 1 then 0 else

if x = 2 then 1
else fib(x - 1) + fib(x – 2))?

Revised AR

Revised AR

● For a function definition f(x
1

, ..., x
n
) = e the AR has

n + NT(e) + 2 elements (so far):

Revised AR

● For a function definition f(x
1

, ..., x
n
) = e the AR has

n + NT(e) + 2 elements (so far):
○ n arguments
○ NT(e) locations for intermediate results
○ Return address
○ Frame pointer

Revised AR

● For a function definition f(x
1

, ..., x
n
) = e the AR has

n + NT(e) + 2 elements (so far):
○ n arguments
○ NT(e) locations for intermediate results
○ Return address
○ Frame pointer

high addresses

Revised Code Generation

● Code generation must know how many temporaries are in
use at each point

Revised Code Generation

● Code generation must know how many temporaries are in
use at each point

● Add a new argument to code generation: the position of the
next available temporary:

cgen(e, n) : generate code for e and use temporaries
whose address is (fp - n) or lower

Revised Code Generation: +

Old: New:

Revised Code Generation: +

cgen(e
1

 + e
2

) =
cgen(e

1
)

push r1
cgen(e

2
)

pop t1
add r1 <- t1 r1

Old: New:

Revised Code Generation: +

cgen(e
1

 + e
2

) =
cgen(e

1
)

push r1
cgen(e

2
)

pop t1
add r1 <- t1 r1

cgen(e
1

 + e
2

, nt) =
cgen(e

1
, nt)

st fp[-nt] <- r1
cgen(e

2
, nt + 1)

ld temp <- fp[-nt]
add r1 <- t1 r1

Old: New:

Revised Code Generation: +

cgen(e
1

 + e
2

) =
cgen(e

1
)

push r1
cgen(e

2
)

pop t1
add r1 <- t1 r1

cgen(e
1

 + e
2

, nt) =
cgen(e

1
, nt)

st fp[-nt] <- r1
cgen(e

2
, nt + 1)

ld temp <- fp[-nt]
add r1 <- t1 r1

Old: New:

Where are the savings?
(Hint: “push” is more expensive
than it looks…)

Notes: Temporaries

Notes: Temporaries

● The temporary area is used like a small, fixed-size stack

Notes: Temporaries

● The temporary area is used like a small, fixed-size stack
● Exercise that might help if you are struggling with PA3c3:

Write out cgen for other constructs

Notes: Temporaries

● The temporary area is used like a small, fixed-size stack
● Exercise that might help if you are struggling with PA3c3:

Write out cgen for other constructs
● Hint: on function entry, you'll have to increment something

by NT(e)
○ ... and on function exit, decrement it ...

Trivia Break: ??

Code Generation for Object-Oriented Langs

● The remainder of today will be spent on two primary topics:

Code Generation for Object-Oriented Langs

● The remainder of today will be spent on two primary topics:
○ object layout in object-oriented languages (i.e.,

subclasses)

Code Generation for Object-Oriented Langs

● The remainder of today will be spent on two primary topics:
○ object layout in object-oriented languages (i.e.,

subclasses)
○ dynamic dispatch

Code Generation for Object-Oriented Langs

● The remainder of today will be spent on two primary topics:
○ object layout in object-oriented languages (i.e.,

subclasses)
○ dynamic dispatch

● These are both tricky because of the Liskov substitution
principle: If B is a subclass of A, then an object of class B can
be used wherever an object of class A is expected

Code Generation for Object-Oriented Langs

● The remainder of today will be spent on two primary topics:
○ object layout in object-oriented languages (i.e.,

subclasses)
○ dynamic dispatch

● These are both tricky because of the Liskov substitution
principle: If B is a subclass of A, then an object of class B can
be used wherever an object of class A is expected
○ This means that code in class A must work unmodified

on an object of class B

Object Layout

Object Layout

● An object is like a struct in C

Object Layout

● An object is like a struct in C
○ The reference foo.field is an index into a foo struct at an

offset corresponding to field

Object Layout

● An object is like a struct in C
○ The reference foo.field is an index into a foo struct at an

offset corresponding to field
● Objects in Cool are implemented this way

Object Layout

● An object is like a struct in C
○ The reference foo.field is an index into a foo struct at an

offset corresponding to field
● Objects in Cool are implemented this way

○ Objects are laid out in contiguous memory

Object Layout

● An object is like a struct in C
○ The reference foo.field is an index into a foo struct at an

offset corresponding to field
● Objects in Cool are implemented this way

○ Objects are laid out in contiguous memory
○ Each attribute stored at a fixed offset in object

Object Layout

● An object is like a struct in C
○ The reference foo.field is an index into a foo struct at an

offset corresponding to field
● Objects in Cool are implemented this way

○ Objects are laid out in contiguous memory
○ Each attribute stored at a fixed offset in object
○ When a method is invoked, the object becomes self and

the fields are the object’s attributes

Cool Object Layout

● The first three words of each Cool object contains header
information:

0

1

2

3

4

…

Class Type Tag

Object Size

Dispatch / Vtable Pointer

Attribute 1

Attribute 2

…

Offset

Cool Object Layout

● The first three words of each Cool object contains header
information:

0

1

2

3

4

…

Class Type Tag

Object Size

Dispatch / Vtable Pointer

Attribute 1

Attribute 2

…

Offset

Class tag (or “type tag”) is
a raw integer
● Identifies class of

the object (Int=1,
Bool=2, ...)

Cool Object Layout

● The first three words of each Cool object contains header
information:

0

1

2

3

4

…

Class Type Tag

Object Size

Dispatch / Vtable Pointer

Attribute 1

Attribute 2

…

Offset

Object size is also a raw
integer
● Size of the object in

words

Cool Object Layout

● The first three words of each Cool object contains header
information:

0

1

2

3

4

…

Class Type Tag

Object Size

Dispatch / Vtable Pointer

Attribute 1

Attribute 2

…

Offset

Dispatch pointer (or vtable
pointer) is a pointer to a
table of methods
● More on this later

Cool Object Layout

● The first three words of each Cool object contains header
information:

0

1

2

3

4

…

Class Type Tag

Object Size

Dispatch / Vtable Pointer

Attribute 1

Attribute 2

…

Offset

Attributes are laid out in
subsequent slots
● Note contiguous

layout

Cool Object Layout

● The first three words of each Cool object contains header
information:

0

1

2

3

4

…

Class Type Tag

Object Size

Dispatch / Vtable Pointer

Attribute 1

Attribute 2

…

Offset

Cool Object Layout

● The first three words of each Cool object contains header
information:

0

1

2

3

4

…

Class Type Tag

Object Size

Dispatch / Vtable Pointer

Attribute 1

Attribute 2

…

Offset

Note this is a convention
that we made up, but it is
similar to how Java and
C++ lay things out. For
example, you could swap
#1 and #2 without loss.

Cool Object Layout: Example

Class A {
a: Int <- 0;
d: Int <- 1;
f(): Int { a <- a + d };

};

Class B inherits A {
b: Int <- 2;
f(): Int { a }; // Override
g(): Int { a <- a - b };

};

Class C inherits A {
c: Int <- 3;
h(): Int { a <- a * c };

};

Cool Object Layout: Example

Class A {
a: Int <- 0;
d: Int <- 1;
f(): Int { a <- a + d };

};

Class B inherits A {
b: Int <- 2;
f(): Int { a }; // Override
g(): Int { a <- a - b };

};

Class C inherits A {
c: Int <- 3;
h(): Int { a <- a * c };

};

Things to note:
● Attributes a and d are inherited by

classes B and C
● All methods in all classes refer to a
● For A methods to work correctly in A,

B, and C objects, attribute a must be
in the same “place” in each object

Cool Object Layout: Example

Class A {
a: Int <- 0;
d: Int <- 1;
f(): Int { a <- a + d };

};

Class B inherits A {
b: Int <- 2;
f(): Int { a }; // Override
g(): Int { a <- a - b };

};

Class C inherits A {
c: Int <- 3;
h(): Int { a <- a * c };

};

Things to note:
● Attributes a and d are inherited by

classes B and C
● All methods in all classes refer to a
● For A methods to work correctly in A,

B, and C objects, attribute a must be
in the same “place” in each object

Cool Object Layout: Example

Class A {
a: Int <- 0;
d: Int <- 1;
f(): Int { a <- a + d };

};

Class B inherits A {
b: Int <- 2;
f(): Int { a }; // Override
g(): Int { a <- a - b };

};

Class C inherits A {
c: Int <- 3;
h(): Int { a <- a * c };

};

Things to note:
● Attributes a and d are inherited by

classes B and C
● All methods in all classes refer to a
● For A methods to work correctly in A,

B, and C objects, attribute a must be
in the same “place” in each object

Cool Object Layout: Example

Class A {
a: Int <- 0;
d: Int <- 1;
f(): Int { a <- a + d };

};

Class B inherits A {
b: Int <- 2;
f(): Int { a }; // Override
g(): Int { a <- a - b };

};

Class C inherits A {
c: Int <- 3;
h(): Int { a <- a * c };

};

Things to note:
● Attributes a and d are inherited by

classes B and C
● All methods in all classes refer to a
● For A methods to work correctly in A,

B, and C objects, attribute a must be
in the same “place” in each object

Object Layout: Key Point

Object Layout: Key Point

● Key Observation: Given a layout for class A, a layout for
subclass B can be defined by extending the layout of A with
additional slots for the additional attributes of B

Object Layout: Key Point

● Key Observation: Given a layout for class A, a layout for
subclass B can be defined by extending the layout of A with
additional slots for the additional attributes of B
○ (i.e., append new fields at the bottom)

Object Layout: Key Point

● Key Observation: Given a layout for class A, a layout for
subclass B can be defined by extending the layout of A with
additional slots for the additional attributes of B
○ (i.e., append new fields at the bottom)
○ leaves the layout of A unchanged (B is an extension)

Object Layout: Key Point

● Key Observation: Given a layout for class A, a layout for
subclass B can be defined by extending the layout of A with
additional slots for the additional attributes of B
○ (i.e., append new fields at the bottom)
○ leaves the layout of A unchanged (B is an extension)
○ this is where the “extends” keyword in Java etc comes

from

Cool Object Layout: Example w/ Picture

Class A {
a: Int <- 0;
d: Int <- 1;
f(): Int { a <- a + d };

};

Class B inherits A {
b: Int <- 2;
f(): Int { a }; // Override
g(): Int { a <- a - b };

};

Class C inherits A {
c: Int <- 3;
h(): Int { a <- a * c };

};

Object Layout: Subclass Invariant

● The offset for an attribute is the same in a class and all of its
subclasses

Object Layout: Subclass Invariant

● The offset for an attribute is the same in a class and all of its
subclasses
○ This choice allows any method defined for an A

1
 to be

used on a subclass A
2

■ without any change to the implementation!

Object Layout: Subclass Invariant

● The offset for an attribute is the same in a class and all of its
subclasses
○ This choice allows any method defined for an A

1
 to be

used on a subclass A
2

■ without any change to the implementation!
● Consider layout for A

n
 ≤ … A

3
 ≤ A

2
 ≤ A

1
:

Header

A
1

 attributes

A
2

 - A
1

attributes

A
3

 - A
2

attributes

…

Object Layout: Subclass Invariant

● The offset for an attribute is the same in a class and all of its
subclasses
○ This choice allows any method defined for an A

1
 to be

used on a subclass A
2

■ without any change to the implementation!
● Consider layout for A

n
 ≤ … A

3
 ≤ A

2
 ≤ A

1
:

Header

A
1

 attributes

A
2

 - A
1

attributes

A
3

 - A
2

attributes

…

A
1

 object

Object Layout: Subclass Invariant

● The offset for an attribute is the same in a class and all of its
subclasses
○ This choice allows any method defined for an A

1
 to be

used on a subclass A
2

■ without any change to the implementation!
● Consider layout for A

n
 ≤ … A

3
 ≤ A

2
 ≤ A

1
:

Header

A
1

 attributes

A
2

 - A
1

attributes

A
3

 - A
2

attributes

…

A
2

 object

Object Layout: Subclass Invariant

● The offset for an attribute is the same in a class and all of its
subclasses
○ This choice allows any method defined for an A

1
 to be

used on a subclass A
2

■ without any change to the implementation!
● Consider layout for A

n
 ≤ … A

3
 ≤ A

2
 ≤ A

1
:

Header

A
1

 attributes

A
2

 - A
1

attributes

A
3

 - A
2

attributes

…

A
3

 object

Object Layout: Subclass Invariant

● The offset for an attribute is the same in a class and all of its
subclasses
○ This choice allows any method defined for an A

1
 to be

used on a subclass A
2

■ without any change to the implementation!
● Consider layout for A

n
 ≤ … A

3
 ≤ A

2
 ≤ A

1
:

Header

A
1

 attributes

A
2

 - A
1

attributes

A
3

 - A
2

attributes

…
A

3
 object

A
2

 object

A
1

 object

Object Layout: Subclass Invariant

● The offset for an attribute is the same in a class and all of its
subclasses
○ This choice allows any method defined for an A

1
 to be

used on a subclass A
2

■ without any change to the implementation!
● Consider layout for A

n
 ≤ … A

3
 ≤ A

2
 ≤ A

1
:

Header

A
1

 attributes

A
2

 - A
1

attributes

A
3

 - A
2

attributes

…
A

3
 object

A
2

 object

A
1

 object
Challenge question:
what about multiple
inheritance, as in C++?

Cool Object Layout: Dynamic Dispatch

Cool Object Layout: Dynamic Dispatch

Class A {
a: Int <- 0;
d: Int <- 1;
f(): Int { a <- a + d };

};

Class B inherits A {
b: Int <- 2;
f(): Int { a }; // Override
g(): Int { a <- a - b };

};

Class C inherits A {
c: Int <- 3;
h(): Int { a <- a * c };

};

Consider f() and g()

Cool Object Layout: Dynamic Dispatch

● Consider e.g()

Cool Object Layout: Dynamic Dispatch

● Consider e.g()
○ g refers to method in B if e is a B

Cool Object Layout: Dynamic Dispatch

● Consider e.g()
○ g refers to method in B if e is a B

● Consider e.f()

Cool Object Layout: Dynamic Dispatch

● Consider e.g()
○ g refers to method in B if e is a B

● Consider e.f()
○ f refers to method in A if f is an A or C (inherited in the

case of C)

Cool Object Layout: Dynamic Dispatch

● Consider e.g()
○ g refers to method in B if e is a B

● Consider e.f()
○ f refers to method in A if f is an A or C (inherited in the

case of C)
○ f refers to method in B for a B object

Cool Object Layout: Dynamic Dispatch

● Consider e.g()
○ g refers to method in B if e is a B

● Consider e.f()
○ f refers to method in A if f is an A or C (inherited in the

case of C)
○ f refers to method in B for a B object

● There is a correspondence here: the implementation of
methods and dynamic dispatch strongly resembles the
implementation of attributes

Cool Object Layout: Dispatch Tables

● Assumption: every class has a fixed set of methods (including
inherited methods)

Cool Object Layout: Dispatch Tables

● Assumption: every class has a fixed set of methods (including
inherited methods)

● A dispatch table (or virtual function table or vtable) indexes
these methods

Cool Object Layout: Dispatch Tables

● Assumption: every class has a fixed set of methods (including
inherited methods)

● A dispatch table (or virtual function table or vtable) indexes
these methods
○ A vtable is an array of method entry points

■ Thus, a vtable is an array of function pointers.

Cool Object Layout: Dispatch Tables

● Assumption: every class has a fixed set of methods (including
inherited methods)

● A dispatch table (or virtual function table or vtable) indexes
these methods
○ A vtable is an array of method entry points

■ Thus, a vtable is an array of function pointers.
● A method f lives at a fixed offset in the dispatch table for a

class and all of its subclasses
○ this works exactly the same way that attributes do

Cool Object Layout: Dispatch Table Example

Cool Object Layout: Dispatch Table Example

Cool Object Layout: Dispatch Table Example

● The dispatch table for class
A has only 1 method

Cool Object Layout: Dispatch Table Example

● The dispatch table for class
A has only 1 method

● The tables for B and C
extend the table for A with
more methods

Cool Object Layout: Dispatch Table Example

● The dispatch table for class
A has only 1 method

● The tables for B and C
extend the table for A with
more methods

● Because methods can be
overridden, the method for
f is not the same in every
class, but is always at the
same offset
○ (i.e., offset 0 here)

Cool Object Layout: Using Dispatch Tables

Cool Object Layout: Using Dispatch Tables

● The dispatch pointer in an object of class X points to the dispatch
table for class X

Cool Object Layout: Using Dispatch Tables

● The dispatch pointer in an object of class X points to the dispatch
table for class X
○ i.e., all objects of class X share one table

Cool Object Layout: Using Dispatch Tables

● The dispatch pointer in an object of class X points to the dispatch
table for class X
○ i.e., all objects of class X share one table

● Every method f of class X is assigned an offset Of in the dispatch
table at compile time

Cool Object Layout: Using Dispatch Tables

● The dispatch pointer in an object of class X points to the dispatch
table for class X
○ i.e., all objects of class X share one table

● Every method f of class X is assigned an offset Of in the dispatch
table at compile time

● To implement a dynamic dispatch e.f() we:

Cool Object Layout: Using Dispatch Tables

● The dispatch pointer in an object of class X points to the dispatch
table for class X
○ i.e., all objects of class X share one table

● Every method f of class X is assigned an offset Of in the dispatch
table at compile time

● To implement a dynamic dispatch e.f() we:
○ Evaluate e, obtaining an object x

Cool Object Layout: Using Dispatch Tables

● The dispatch pointer in an object of class X points to the dispatch
table for class X
○ i.e., all objects of class X share one table

● Every method f of class X is assigned an offset Of in the dispatch
table at compile time

● To implement a dynamic dispatch e.f() we:
○ Evaluate e, obtaining an object x
○ Find D by reading the dispatch-table field of x

Cool Object Layout: Using Dispatch Tables

● The dispatch pointer in an object of class X points to the dispatch
table for class X
○ i.e., all objects of class X share one table

● Every method f of class X is assigned an offset Of in the dispatch
table at compile time

● To implement a dynamic dispatch e.f() we:
○ Evaluate e, obtaining an object x
○ Find D by reading the dispatch-table field of x
○ Call D[Of](x)

Cool Object Layout: Using Dispatch Tables

● The dispatch pointer in an object of class X points to the dispatch
table for class X
○ i.e., all objects of class X share one table

● Every method f of class X is assigned an offset Of in the dispatch
table at compile time

● To implement a dynamic dispatch e.f() we:
○ Evaluate e, obtaining an object x
○ Find D by reading the dispatch-table field of x
○ Call D[Of](x)

■ D is the dispatch table for x

Cool Object Layout: Using Dispatch Tables

● The dispatch pointer in an object of class X points to the dispatch
table for class X
○ i.e., all objects of class X share one table

● Every method f of class X is assigned an offset Of in the dispatch
table at compile time

● To implement a dynamic dispatch e.f() we:
○ Evaluate e, obtaining an object x
○ Find D by reading the dispatch-table field of x
○ Call D[Of](x)

■ D is the dispatch table for x
■ In the call, self is bound to x (why?)

Cool Object Layout: Dyn. Dispatch Codegen

● Cgen for objexp.mname(arg1):

Cool Object Layout: Dyn. Dispatch Codegen

● Cgen for objexp.mname(arg1):

push self

Cool Object Layout: Dyn. Dispatch Codegen

● Cgen for objexp.mname(arg1):

push self
push fp

Cool Object Layout: Dyn. Dispatch Codegen

● Cgen for objexp.mname(arg1):

push self
push fp
cgen(arg1)

Cool Object Layout: Dyn. Dispatch Codegen

● Cgen for objexp.mname(arg1):

push self
push fp
cgen(arg1)
push r1 ; push arg1

Cool Object Layout: Dyn. Dispatch Codegen

● Cgen for objexp.mname(arg1):

push self
push fp
cgen(arg1)
push r1 ; push arg1
cgen(objexp)

Cool Object Layout: Dyn. Dispatch Codegen

● Cgen for objexp.mname(arg1):

push self
push fp
cgen(arg1)
push r1 ; push arg1
cgen(objexp)
bz r1 dispatch_on_void_error

Cool Object Layout: Dyn. Dispatch Codegen

● Cgen for objexp.mname(arg1):

push self
push fp
cgen(arg1)
push r1 ; push arg1
cgen(objexp)
bz r1 dispatch_on_void_error
push r1 ; will be “self” for callee

Cool Object Layout: Dyn. Dispatch Codegen

● Cgen for objexp.mname(arg1):

push self
push fp
cgen(arg1)
push r1 ; push arg1
cgen(objexp)
bz r1 dispatch_on_void_error
push r1 ; will be “self” for callee
ld temp<-r1[2] ; temp <- vtable

Cool Object Layout: Dyn. Dispatch Codegen

● Cgen for objexp.mname(arg1):

push self
push fp
cgen(arg1)
push r1 ; push arg1
cgen(objexp)
bz r1 dispatch_on_void_error
push r1 ; will be “self” for callee
ld temp<-r1[2] ; temp <- vtable
ld temp <- temp[X] ; X is offset of mname in vtables

; for objects of typeof(objexp)

Cool Object Layout: Dyn. Dispatch Codegen

● Cgen for objexp.mname(arg1):

push self
push fp
cgen(arg1)
push r1 ; push arg1
cgen(objexp)
bz r1 dispatch_on_void_error
push r1 ; will be “self” for callee
ld temp<-r1[2] ; temp <- vtable
ld temp <- temp[X] ; X is offset of mname in vtables

; for objects of typeof(objexp)
call temp

Cool Object Layout: Dyn. Dispatch Codegen

● Cgen for objexp.mname(arg1):

push self
push fp
cgen(arg1)
push r1 ; push arg1
cgen(objexp)
bz r1 dispatch_on_void_error
push r1 ; will be “self” for callee
ld temp<-r1[2] ; temp <- vtable
ld temp <- temp[X] ; X is offset of mname in vtables

; for objects of typeof(objexp)
call temp
pop fp

Course Announcements

● We recently fixed a bug in the reference compiler’s x86-64
module. Only use Cool version 1.39 for compiling to x86.
○ There will be an extra credit question on the midterm asking

why I had to do this, if you want to do a comparison.
○ I will also award extra credit if you can find another bug in the

reference compiler
● Don’t forget there is a midterm in this class on Wednesday!

○ Review session: tonight at 5pm (virtually)
○ Extra office half-hours tomorrow at 10am, 4:30pm

● Hopefully you started PA3c3 over break
○ its due date is one week from today

