Code Generation
Martin Kellogg

Course Announcements

e Werecently fixed a bug in the reference compiler’s x86-64
module. Only use Cool version 1.39 for compiling to x86.
o There will be an extra credit question on the midterm asking
why | had to do this, if you want to do a comparison.

o | will also award extra credit if you can find another bug in the
reference compiler

Course Announcements

e Werecently fixed a bug in the reference compiler’s x86-64
module. Only use Cool version 1.39 for compiling to x86.
o There will be an extra credit question on the midterm asking
why | had to do this, if you want to do a comparison.
o | will also award extra credit if you can find another bug in the
reference compiler
e Don'’t forget thereis a midterm in this class on Wednesday!
o Review session: tonight at 5pm (virtually)
o Extra office half-hours tomorrow at 10am, 4:30pm

Course Announcements

e Werecently fixed a bug in the reference compiler’s x86-64
module. Only use Cool version 1.39 for compiling to x86.
o There will be an extra credit question on the midterm asking
why | had to do this, if you want to do a comparison.
o | will also award extra credit if you can find another bug in the
reference compiler
e Don'’t forget thereis a midterm in this class on Wednesday!
o Review session: tonight at 5pm (virtually)
o Extra office half-hours tomorrow at 10am, 4:30pm
e Hopefully you started PA3c3 over break
o itsduedateis

Agenda

e Lasttime, all the way before the break:
o Stack machine basics
m accumulator, stack pointer
o Stack discipline, calling convention for our stack machine
m with a bit of optimization thrown in to give you a taste of
the idea
e Today:
Quick review
Finish basics of stack machine codegen (i.e., variables, temps)
Object layout and its interactions with subtyping
Dispatch tables/vtables

o O O O

Agenda

e Lasttime, all the way before the break:
o Stack machine basics
m accumulator, stack pointer
o Stack discipline, calling convention for our stack machine
m with a bit of optimization thrown in to give you a taste of
the idea
e Today:
o Quick review
o Finish basics of stack machine codegen (i.e., variables, temps)
o Object layout and its interactions with subtyping
o Dispatch tables/vtables

Review: Stack Machine Basics

Review: Stack Machine Basics

e A stack machine maintains a stack of values for intermediate
results

Review: Stack Machine Basics

e A stack machine maintains a stack of values for intermediate
results
o all operations read their inputs off of the stack

Review: Stack Machine Basics

e A stack machine maintains a stack of values for intermediate
results
o all operations read their inputs off of the stack
o toreduce memory usage, keep the top of the stackina
special accumulator register

Review: Stack Machine Basics

e A stack machine maintains a stack of values for intermediate
results
o all operations read their inputs off of the stack
o toreduce memory usage, keep the top of the stackina
special accumulator register
e [tiscritical that the stack is preserved across the evaluation of
subexpressions

Review: Stack Machine Basics

e A stack machine maintains a stack of values for intermediate
results
o all operations read their inputs off of the stack
o toreduce memory usage, keep the top of the stackina

special accumulator register

e [tiscritical that the stack is preserved across the evaluation of
subexpressions
o thisletsuswrite a code generator

Review: Stack Machine Basics

e A stack machine maintains a stack of values for intermediate
results
o all operations read their inputs off of the stack
o toreduce memory usage, keep the top of the stackina
special accumulator register
e [tiscritical that the stack is preserved across the evaluation of

subexpressions
o thisletsuswrite a code generator
e Lasttime, we saw how to generate Cool-ASM using a stack
machine for arithmetic expressions (add/subtract), if, and

function calls

Review: Stack Machine Basics

e A stack machine maintains a stack of values for intermediate

results _
o all operations read their inpu

o toreduce memory usage, kee push ri
special accumulator register

e Itiscritical that the stackispres{ popt1
subexpressions addr1<-t1r1

o thisletsuswrite a coTcETTTCTTToO
e Lasttime, we saw how to generate Cool-ASM using a stack
machine for arithmetic expressions (add/subtract), if, and

function calls

Code Generation: Variables

e Variablereferences are the last construct

Code Generation: Variables

e Variablereferences are the last construct
e The “variables” of a function are just its parameters

Code Generation: Variables

e Variable references are the last construct
e The “variables” of a function are just its parameters
o Theyareallinthe AR

Code Generation: Variables

e Variable references are the last construct

e The “variables” of a function are just its parameters
o Theyareallinthe AR
o Pushed by the caller

Code Generation: Variables

e Variable references are the last construct

e The “variables” of a function are just its parameters
o Theyareallinthe AR
o Pushed by the caller

e Problem: because the stack grows when intermediate results are
saved, the variables are not at a fixed offset from sp

Code Generation: Variables

e Variable references are the last construct
e The “variables” of a function are just its parameters
o Theyareallinthe AR
o Pushed by the caller
e Problem: because the stack grows when intermediate results are
saved, the variables are not at a fixed offset from sp
o Challenge question: what are they at a fixed offset from?

Code Generation: Variables

e Variable references are the last construct
e The “variables” of a function are just its parameters
o Theyareallinthe AR
o Pushed by the caller
e Problem: because the stack grows when intermediate results are
saved, the variables are not at a fixed offset from sp
o Challenge question: what are they at a fixed offset from?
o Answer: the frame pointer

Code Generation: Variables

e Variable references are the last construct
e The “variables” of a function are just its parameters
o Theyareallinthe AR
o Pushed by the caller
e Problem: because the stack grows when intermediate results are
saved, the variables are not at a fixed offset from sp
o Challenge question: what are they at a fixed offset from?
o Answer: the frame pointer
m Always points to the return address on the stack
e =thevalue of sp on function entry

Code Generation: Variables

e Variable references are the last construct
e The “variables” of a function are just its parameters
o Theyareallinthe AR
o Pushed by the caller
e Problem: because the stack grows when intermediate results are
saved, the variables are not at a fixed offset from sp
o Challenge question: what are they at a fixed offset from?
o Answer: the frame pointer
m Always points to the return address on the stack
e =thevalue of sp on function entry
m Itdoesn’'t move => args on the stack are at a fixed offset

Code Generation: Variables

e Example: For afunction def f(xl, x2) = e the activation and frame
pointer are set up as follows:

Code Generation: Variables

e Example: For afunction def f(xl, x2) = e the activation and frame
pointer are set up as follows:

SP
Fp|_RA
XZ
X1
old FP l
J high
addresses

Code Generation: Variables

e Example: For afunction def f(xl, x2) = e the activation and frame
pointer are set up as follows:

SP e x, (first parameter)is at fp + 2
po|RA
XZ
X1
old FP 4 l
J high
addresses

Code Generation: Variables

e Example: For afunction def f(xl, x2) = e the activation and frame
pointer are set up as follows:

SP

* X, (first parameter) is at fp + 2

* X, (second parameter)isatfp+ 1
Fp|_RA

XZ

X1

old FP l
J high
addresses

Code Generation: Variables

e Example: For afunction def f(xl, x2) = e the activation and frame
pointer are set up as follows:

SP

* X, (first parameter) is at fp + 2
* X, (second parameter)isatfp+ 1
Fp | RA e Thus:
XZ
X
old FP l Id r1 <- fp[z]
J high
addresses

Code Generation: Variables

e Example: For afunction def f(xl, x2) = e the activation and frame
pointer are set up as follows:

SP

FP

X

X4

old FP

)

|

high
addresses

X, (first parameter) is at fp + 2
X, (second parameter)isatfp+ 1
Thus:

Id r1 <- fp[Zz]

where z=n+1-i

Summary

Summary

e The activation record must be designed together with the code
generator

Summary

e The activation record must be with the code
generator
e Code generation can be done by recursive traversal of the AST

Summary

e The activation record must be designed together with the code
generator
e Code generation can be done by recursive traversal of the AST

e Asyou write your compiler, we recommend starting with a stack
machine (simpler!)

Summary

e The activation record must be designed together with the code
generator
e Code generation can be done by recursive traversal of the AST
e Asyou write your compiler, we recommend starting with a stack
machine (simpler!)
o ./cool —asmgenerates Cool-ASM stack machine code for
Cool

m use this to help you with PA3!

Summary

e The activation record must be with the code
generator
e Code generation can be done by recursive traversal of the AST
e Asyou write your compiler, we recommend starting with a stack
machine (simpler!)
o ./cool —asmgenerates Cool-ASM stack machine code for
Cool

m use this to help you with PA3!
e Production compilers do different things:

Summary

The activation record must be with the code
generator
Code generation can be done by recursive traversal of the AST
As you write your compiler, we recommend starting with a stack
machine (simpler!)
o ./cool —asmgenerates Cool-ASM stack machine code for
Cool
m use this to help you with PA3!
Production compilers do different things:
o keep as many values as possible in registers, etc

Summary

The activation record must be with the code
generator
Code generation can be done by recursive traversal of the AST
As you write your compiler, we recommend starting with a stack
machine (simpler!)
o ./cool —asmgenerates Cool-ASM stack machine code for
Cool
m use this to help you with PA3!
Production compilers do different things:

o keep as many values as possible in registers, etc
o save this stuff for PA4

Temporaries

Temporaries

e The stack machine code layout we've AR

described so far has activation records

. .) Intermediates
and intermediate results interleaved on

the stack. AR

Intermediates

Temporaries

e The stack machine code layout we've
described so far has activation records
and intermediate results interleaved on
the stack.

o Advantage: Very simple code
generation (great for PA3)

AR

Intermediates

AR

Intermediates

Temporaries

e The stack machine code layout we've
described so far has activation records
and intermediate results interleaved on
the stack.

o Advantage: Very simple code
generation (great for PA3)
o Disadvantage: Very slow code (bad
for PA4)
m Storing and loading temporaries
requires a store/load and sp
adjustment

AR

Intermediates

AR

Intermediates

Temporaries: A Better Way

e l|dea: Keep temporaries inthe AR

Temporaries: A Better Way

e l|dea: Keep temporaries inthe AR
o Creates work for us: the code generator must
in the AR for each temporary

Temporaries: A Better Way

e l|dea: Keep temporaries inthe AR
o Creates work for us: the code generator must
in the AR for each temporary
o Therefore, we need to how many temporaries there
are!

Temporaries: A Better Way

e l|dea: Keep temporaries inthe AR
o Creates work for us: the code generator must
in the AR for each temporary
o Therefore, we need to how many temporaries there
are!
e |nother words, our compiler must determine:

Temporaries: A Better Way

e l|dea: Keep temporaries inthe AR
o Creates work for us: the code generator must
in the AR for each temporary
o Therefore, we need to how many temporaries there
are!
e |nother words, our compiler must determine:
o What intermediate values are placed on the stack?

Temporaries: A Better Way

e l|dea: Keep temporaries inthe AR
o Creates work for us: the code generator must
in the AR for each temporary
o Therefore, we need to how many temporaries there
are!
e |nother words, our compiler must determine:
o What intermediate values are placed on the stack?
o How many slots are needed in the AR to hold these values?

Temporaries: How Many?

e Let NT(e) = number of temps
needed to evaluate e

Temporaries: How Many?

e Let NT(e) = number of temps
needed to evaluate e
e Example:NT(e, +e,)

pushril

pop til
addrl<-tir1l

Temporaries: How Many?

e Let NT(e) = number of temps
needed to evaluate e
e Example:NT(e, +e,)
o Needs at least as many
temporaries as NT(e,)

pushril

pop til
addrl<-tir1l

Temporaries: How Many?

e Let NT(e) = number of temps
needed to evaluate e
e Example:NT(e, +e,)
o Needs at least as many
temporaries as NT(e,)
o Needs at least as many
temporaries as NT(e,) + 1

pushril

pop til
addrl<-tir1l

Temporaries: How Many?

e Let NT(e) = number of temps
needed to evaluate e
e Example:NT(e, +e,)
o Needs at least as many
temporaries as NT(e,)
o Needs at least as many
temporaries as NT(e,) + 1
e Insight: Space used for
temporaries in e, can be reused
for temporariesine,

pushril

pop til
addrl<-tir1l

Temporaries: The NumTemps Equations

o NT(e, +e,)=max(NT(e,), 1+ NT(e,))

Temporaries: The NumTemps Equations

. NT(e1+e) max(NT(e,), 1+ NT(e,))
e NT(e, -e,)=max(NT(e,), 1+NT(e,)

Temporaries: The NumTemps Equations

. NT(e1+e) max(NT(e,), 1+ NT(e,))

o NT(e, -e,) =max(NT(e) 1+ NT(e,))

e NT(ife, =e, then e3elsee4)=
max(NT(el), 1+ NT(e,),NT(e,), NT(e,))

4

Temporaries: The NumTemps Equations

o NT(e, +e)=max(NT(e,), 1+NT(e,)))
e NT(e, -e,)=max(NT(e)1+NT(,)
e NT(ife, =e,thene, elsee A=
maX(NT(), 1+ NT(e) T(e,),NT(e,))
o NT(id(e,, ... e)) max(NT(D, N T(e)

Temporaries: The NumTemps Equations

o NT(e, +e)=max(NT(e,), 1+NT(e,)))
e NT(e, -e,)=max(NT(e)1+NT(,)
e NT(ife, =e,thene, elsee A=

maX(NT(), 1+NT(e) T(e,), NT(e,))
o NT(id(e,, ... e)) max(NT(D, N T(e)
e NT(int)=0

Temporaries: The NumTemps Equations

o NT(e, +e)=max(NT(e,), 1+NT(e,)))
e NT(e, -e,)=max(NT(e) 1+ NT(e,))
e NT(ife, =e,thene, elsee A=

maX(NT(), 1+NT(e) T(e,), NT(e,))
o NT(id(e,, ... e)) max(NT(D, N T(e)
e NT(int)=0
e NT(id)=0

Temporaries: The NumTemps Equations
o NT(e, +e)=max(NT(e,), 1+NT(e,)))
o NT(e,-e,)=max(NT(e,), 1+NT(e 2))
e NT(ife, =e, then e3elsee)

max(NT(el) 1+NT(e,),NT(e,),N

o NT(id(e,,....e))= max(NT(s N T(e

n

e NT(int)=0

T(e,)
)

n

* NTlid)=0 [In class exercise: what is NT(def fib(x) =

if x=1thenOelse
if x=2then 1
_ else fib(x - 1) + fib(x - 2))?

Revised AR

Revised AR

e For afunction definition f(xl, xn) = e the AR has
n + NT(e) + 2elements(so far):

Revised AR

e For afunction definition f(xl, xn) = e the AR has
n + NT(e) + 2elements(so far):
o narguments
NT(e) locations for intermediate results
Return address
Frame pointer

O O O

Revised AR

e For afunction definition f(xl, xn) = e the AR has
n + NT(e) + 2elements(so far):

O

O
O
O

N arguments

NT(e) locations for intermediate results

Return address
Frame pointer

high addresses l

SP

FP

Revised Code Generation

e Code generation must know how many temporaries are in
use at each point

Revised Code Generation

e Code generation must know how many temporaries are in
use at each point

e Addanew argument to code generation: the position of the
next available temporary:

: generate code for e and use temporaries
whose address is (fp - n) or lower

Revised Code Generation: +

Old: New:

Revised Code Generation: +

Old: New:

cgen(e, +e)) =
cgen(e,)
pushril
cgen(e,)
pop tl
addri<-tir1l

Revised Code Generation: +

Old: New:
cgen(e, +e)) = cgen(e1 +e,nt) =
cgen(e,) cgen(e,, nt)
pushril st fp[-nt] <-r1
cgen(e,) cgen(e,, nt+ 1)
pop t1 |d temp <- fp[-nt]

addrli<-tirl addrli<-tirl

Revised Code Generation: +

Old: New:
cgen(e, +e)) = cgen(e, +e,,nt) =
cgen(e,) cgen(e,, nt)
pushril st fp[-nt] <-r1l
cgen(e,) cgen(e,,nt+1)
pop t1 Ild temp <- fp[-nt]
addrl<-tir1 addri<-tir1l

Where are the savings?
(Hint: “push” is more expensive

than it looks...)

Notes: Temporaries

Notes: Temporaries

e Thetemporary areais used like a small, fixed-size stack

Notes: Temporaries

e Thetemporary areais used like a small, fixed-size stack
e Exercise that might help if you are struggling with PA3c3:
Write out for other constructs

Notes: Temporaries

e Thetemporary areais used like a small, fixed-size stack

e Exercise that might help if you are struggling with PA3c3:
Write out for other constructs

e Hint: on function entry, you'll have to increment something
by NT(e)

o ..andon function exit, decrement it ...

Trivia Break: ??

Code Generation for Object-Oriented Langs

e Theremainder of today will be spent on two primary topics:

Code Generation for Object-Oriented Langs

e Theremainder of today will be spent on two primary topics:
o object layout in object-oriented languages (i.e.,
subclasses)

Code Generation for Object-Oriented Langs

e Theremainder of today will be spent on two primary topics:
o object layout in object-oriented languages (i.e.,
subclasses)
o dynamic dispatch

Code Generation for Object-Oriented Langs

e Theremainder of today will be spent on two primary topics:
o object layout in object-oriented languages (i.e.,
subclasses)
o dynamic dispatch
e These are both tricky because of the Liskov substitution
principle: If B is a subclass of A, then an object of class B can
be used wherever an object of class A is expected

Code Generation for Object-Oriented Langs

e Theremainder of today will be spent on two primary topics:
o object layout in object-oriented languages (i.e.,
subclasses)
o dynamic dispatch
e These are both tricky because of the Liskov substitution
principle: If B is a subclass of A, then an object of class B can
be used wherever an object of class A is expected
o This means that code in class A must work unmodified
on an object of class B

Object Layout

Object Layout

e AnobjectislikeastructinC

Object Layout

e AnobjectislikeastructinC
o Thereference foo.field is an index into a foo struct at an
offset corresponding to field

Object Layout

e AnobjectislikeastructinC
o Thereference foo.fieldis anindex into afoo struct at an
offset corresponding to field
e Objectsin Cool are implemented this way

Object Layout

e AnobjectislikeastructinC
o Thereference foo.fieldis anindex into afoo struct at an
offset corresponding to field
e Objectsin Cool are implemented this way
o Objects arelaid outin

Object Layout

e AnobjectislikeastructinC
o Thereference foo.field is an index into a foo struct at an
offset corresponding to field
e Objectsin Cool are implemented this way
o Objects arelaid outin
o Each attribute stored at a fixed offset in object

Object Layout

e AnobjectislikeastructinC
o Thereference foo.fieldis anindex into afoo struct at an
offset corresponding to field
e Objectsin Cool are implemented this way
o Objects arelaid outin
o FEach attribute stored at a fixed offset in object
o When amethod is invoked, the object becomes self and
the fields are the object’s attributes

Cool Object Layout

e The first three words of each Cool object contains header

information:
Offset

Cool Object Layout

e The first three words of each Cool object contains header

information:

Offset

Class Type Tag

0

~
IS

Class tag (or “type tag”) is

araw integer

e |dentifies class of
the object (Int=1,
Bool=2,...)

Cool Object Layout

e The first three words of each Cool object contains header

information:

Offset

Class Type Tag

0

Object Size

\

1
\

Object size is also a raw

integer

e Size of the objectin
words

Cool Object Layout

e The first three words of each Cool object contains header

information:

Class Type Tag

Object Size

Dispatch / Vtable Pointer

Offset

= O

N

Dispatch pointer (or vtable
pointer) is a pointer to a
table of methods

e Moreon this later

Cool Object Layout

e The first three words of each Cool object contains header

information:

Offset

Class Type Tag 0

Object Size 1

Dispatch / Vtable Pointer 2

Attribute 1

ribute -~ 3

Attribute 2 BN

Attributes are laid out in
subsequent slots
e Note contiguous
layout

Cool Object Layout

e The first three words of each Cool object contains header

information:
Offset

@)

Class Type Tag

Object Size

Dispatch / Vtable Pointer

Attribute 1

Attribute 2

A W N -

Cool Object Layout

e The first three words of each Cool object contains header

information:
Offset

@)

Class Type Tag /Note thisis a convention\

that ,butitis
similar to how Java and
C++ lay things out. For
example, you could swap
\#1 and #2 without loss. /

Object Size

Dispatch / Vtable Pointer

Attribute 1

A W N -

Attribute 2

Cool Object Layout: Example

Class A{ Class C inherits A {
a: Int<-0; c:Int<-3;
d: Int <- 1; h():Int{a<-a*c}
f():Int{a<-a+d}; };

L

Class B inherits A {
b: Int <- 2;
f(): Int{a};
g():Int{a<-a-b};
L

Cool Object Layout: Example

Class A {
a: Int<-0;
d: Int <-1;
f():Int{a<-a+d};
L

Class B inherits A {
b: Int <- 2;
f(): Int{a};
g():Int{a<-a-b};
L

Class C inherits A {
c:Int <-3;
h():Int{a<-a*c}

I3

/I'hings to note: \

Cool Object Layout: Example

Class A {
a: Int<-0;
d: Int <-1;
f():Int{a<-a+d};
L

Class B inherits A {
b: Int <- 2;
f(): Int{a};
g():Int{a<-a-b};
L

Class C inherits A {
c:Int <-3;
h():Int{a<-a*c}

I3

/I'hings to note:
e Attributes aandd are inherited by

N

classes B and C

~

Cool Object Layout: Example

Class A {
a: Int<-0;
d: Int <-1;
f():Int{a<-a+d};
L

Class B inherits A {
b: Int <- 2;
f(): Int{a};
g():Int{a<-a-b};
L

Class C inherits A {
c:Int <-3;
h():Int{a<-a*c}

I3

/I'hings to note:
e Attributes aandd are inherited by
classes Band C
e All methodsin all classes refer to a

N

~

/

Cool Object Layout: Example

Class A{ Class C inherits A {
a: Int<-0; c:Int<-3;
d: Int <- 1; h(): Int{a<-a*c}
f():Int{a<-a+d}; };
$ /I'hings to note: \
Class B inherits A{ ° g’;tsr;te)g’lcgezsdagd d are inherited by
b: Int <- 2;

e All methodsin all classes refer to a
f(): Int{a}; e For A methods to work correctly in A,
g():Int{a<-a-b} B, and C objects, attribute a must be

X _inthesame “place” ineachobject ~ /

Object Layout: Key Point

Object Layout: Key Point

e Key Observation: Given a layout for class A, a layout for
subclass B can be defined by extending the layout of A with
additional slots for the additional attributes of B

Object Layout: Key Point

e Key Observation: Given a layout for class A, a layout for
subclass B can be defined by extending the layout of A with
additional slots for the additional attributes of B

o (i.e., append new fields at the bottom)

Object Layout: Key Point

e Key Observation: Given a layout for class A, a layout for
subclass B can be defined by extending the layout of A with
additional slots for the additional attributes of B

o (i.e., append new fields at the bottom)
o leaves the layout of A unchanged (B is an extension)

Object Layout: Key Point

e Key Observation: Given a layout for class A, a layout for
subclass B can be defined by extending the layout of A with
additional slots for the additional attributes of B

o (i.e., append new fields at the bottom)

o leaves the layout of A unchanged (B is an extension)

o thisiswhere the “extends” keyword in Java etc comes
from

Cool Object Layout: Example w/ Picture

Class A{ Class C inherits A {
a: Int <-0; c:Int <-3;
d: Int <- 1; h():Int{a<-a*c}

f():Int{a<-a+d}; J; Class |4 |8 |c
}: %\

0 (tag) Atag |Btag |Ctag

Class B inherits A { 1(size) |5 6 6
b: Int <- 2; 2 (vtable) |* * *
f() Int { d }; 3 (attr#l) |a a a
g():Int{a<-a-b}; 4. d d d

}; 5 b c

Object Layout: Subclass Invariant

e The offset for an attribute is the in a class and all of its
subclasses

Object Layout: Subclass Invariant

e The offset for an attribute is the in a class and all of its
subclasses
o This choice allows any method defined for an A, to be
used on asubclass A,
m without any change to the implementation!

Object Layout: Subclass Invariant

e The offset for an attribute is the in a class and all of its
subclasses
o This choice allows any method defined for an A, to be
used on asubclass A,
m without any change to the implementation!
e ConsiderlayoutforA <. .A <A <A

Header

A1 attributes

A2 - A1 attributes

A3 - A2 attributes

Object Layout: Subclass Invariant

e The offset for an attribute is the in a class and all of its
subclasses
o This choice allows any method defined for an A, to be
used on asubclass A,
m without any change to the implementation!
e ConsiderlayoutforA <..A <A <A

} A, object

Header

A1 attributes

A2 - A1 attributes

A3 - A2 attributes

Object Layout: Subclass Invariant

e The offset for an attribute is the

subclasses

in a class and all of its

o This choice allows any method defined for an A, to be
used on asubclass A,
m without any change to the implementation!

e ConsiderlayoutforA <. .A <A <A

Header

A1 attributes

A2 - A1 attributes

A3 - A2 attributes

~N

- A, object

Object Layout: Subclass Invariant

e The offset for an attribute is the

subclasses

in a class and all of its

o This choice allows any method defined for an A, to be
used on asubclass A,
m without any change to the implementation!

e ConsiderlayoutforA <. .A <A <A

Header

A1 attributes

A2 - A1 attributes

A3 - A2 attributes

\

- A, object

Object Layout: Subclass Invariant

e The offset for an attribute is the

subclasses

in a class and all of its

o This choice allows any method defined for an A, to be
used on asubclass A,
m without any change to the implementation!

e ConsiderlayoutforA <. .A <A <A

Header

A1 attributes

A2 - A1 attributes

A3 - A2 attributes

f

7

N

A, object
- A, object

A, object

Object Layout: Subclass Invariant

e The offset for an attribute is the

subclasses

in a class and all of its

o This choice allows any method defined for an A, to be
used on asubclass A,
m without any change to the implementation!

e ConsiderlayoutforA <. .A <A <A

Header

A1 attributes

A2 - A1 attributes

A3 - A2 attributes

f

7

N

A, object
- A, object

A, object

Challenge question:
what about multiple

Jnheritance, asin C++?

~

Cool Object Layout: Dynamic Dispatch

Cool Object Layout: Dynamic Dispatch

Class A{ Class C inherits A {
a: Int<-0; c:Int<-3;
d: Int <- 1; h(): Int{a<-a*c}
L
L
Class B inherits A {

b: Int <- 2 [Consider and J

Cool Object Layout: Dynamic Dispatch

e Consider e.g()

Cool Object Layout: Dynamic Dispatch

e Consider e.g()
o greferstomethodinBifeisaB

Cool Object Layout: Dynamic Dispatch

e Consider e.g()
o greferstomethodinBifeisaB
e Consider e.f ()

Cool Object Layout: Dynamic Dispatch

e Consider e.g()
o greferstomethodinBifeisaB
e Consider e.f ()
o T referstomethodinAif fisan Aor C(inherited in the
case of C)

Cool Object Layout: Dynamic Dispatch

e Consider e.g()
o greferstomethodinBifeisaB
e Consider e.f ()
o T referstomethodinAif fisan Aor C(inherited in the
case of C)
o T referstomethod in B for a B object

Cool Object Layout: Dynamic Dispatch

e Consider e.g()
o greferstomethodinBifeisaB

e Consider e.f ()
o T referstomethodinAif fisan Aor C(inherited in the

case of C)

o T referstomethod in B for a B object

e Thereisacorrespondence here: the implementation of
methods and dynamic dispatch strongly resembles the
implementation of attributes

Cool Object Layout: Dispatch Tables

e Assumption: every class has a fixed set of methods (including
inherited methods)

Cool Object Layout: Dispatch Tables

e Assumption: every class has a fixed set of methods (including
inherited methods)

e Adispatch table (or virtual function table or vtable) indexes
these methods

Cool Object Layout: Dispatch Tables

e Assumption: every class has a fixed set of methods (including
inherited methods)
e Adispatch table (or virtual function table or vtable) indexes
these methods
o Avtableis an array of method entry points
m Thus,avtableis an array of function pointers.

Cool Object Layout: Dispatch Tables

e Assumption: every class has a fixed set of methods (including
inherited methods)
e Adispatch table (or virtual function table or vtable) indexes
these methods
o Avtableis an array of method entry points
m Thus,avtableis an array of function pointers.
e A methodflives at a fixed offset in the dispatch table for a
class
o this works exactly the same way that attributes do

Cool Object Layout: Dispatch Table Example

Cool Object Layout: Dispatch Table Example

Class

Offset

f_A

f_B

f_A

Cool Object Layout: Dispatch Table Example

e Thedispatch table for class
A has only 1 method

Class

Offset

f_A

f_B

f_A

Cool Object Layout: Dispatch Table Example

e Thedispatch table for class
A has only 1 method

e ThetablesforBandC
extend the table for A with
more methods

Class

Offset

f_A

f_B

f_A

Cool Object Layout: Dispatch Table Example

The dispatch table for class
A has only 1 method

The tables for Band C
extend the table for A with
more methods

Because methods can be
overridden, the method for
fis not the samein every
class, but is always at the
same offset

o (i.e., offset O here)

Class | A B C
Offset
0 f A fB f_A
1 g h

Cool Object Layout: Using Dispatch Tables

Cool Object Layout: Using Dispatch Tables

e Thedispatch pointer in an object of class X points to the dispatch
table for class X

Cool Object Layout: Using Dispatch Tables

e Thedispatch pointer in an object of class X points to the dispatch
table for class X
o i.e., all objects of class X

Cool Object Layout: Using Dispatch Tables

e Thedispatch pointer in an object of class X points to the dispatch
table for class X
o i.e., all objects of class X
e Every method f of class X is assigned an offset 0. in the dispatch
table at compile time

Cool Object Layout: Using Dispatch Tables

e Thedispatch pointer in an object of class X points to the dispatch
table for class X
o i.e., all objects of class X

e Every method f of class X is assigned an offset 0. in the dispatch
table at compile time

e Toimplement adynamicdispatche.f () we:

Cool Object Layout: Using Dispatch Tables

e Thedispatch pointer in an object of class X points to the dispatch
table for class X
o i.e., all objects of class X

e Every method f of class X is assigned an offset 0. in the dispatch
table at compile time

e Toimplement adynamicdispatche.f () we:
o Evaluate e, obtaining an object x

Cool Object Layout: Using Dispatch Tables

e Thedispatch pointer in an object of class X points to the dispatch
table for class X
o i.e., all objects of class X

e Every method f of class X is assigned an offset 0. in the dispatch
table at compile time

e Toimplement adynamicdispatche.f () we:
o Evaluate e, obtaining an object x
o Find D by reading the dispatch-table field of x

Cool Object Layout: Using Dispatch Tables

e Thedispatch pointer in an object of class X points to the dispatch
table for class X
o i.e., all objects of class X

e Every method f of class X is assigned an offset 0. in the dispatch
table at compile time

e Toimplement adynamicdispatche.f () we:
o Evaluate e, obtaining an object x
o Find D by reading the dispatch-table field of x
o CallD[0.](x)

Cool Object Layout: Using Dispatch Tables

e Thedispatch pointer in an object of class X points to the dispatch
table for class X
o i.e., all objects of class X
e Every method f of class X is assigned an offset 0. in the dispatch
table at compile time
e Toimplement adynamicdispatche.f () we:
o Evaluate e, obtaining an object x
o Find D by reading the dispatch-table field of x
o CallD[0.](x)
m Disthedispatch table for x

Cool Object Layout: Using Dispatch Tables

e Thedispatch pointer in an object of class X points to the dispatch
table for class X
o i.e., all objects of class X
e Every method f of class X is assigned an offset 0. in the dispatch
table at compile time
e Toimplement adynamicdispatche.f () we:
o Evaluate e, obtaining an object x
o Find D by reading the dispatch-table field of x
o CallD[0.](x)
m Disthedispatch table for x
m Inthecall, self is bound to x (why?)

Cool Object Layout: Dyn. Dispatch Codegen

e Cgenforobjexp.mname(argl):

Cool Object Layout: Dyn. Dispatch Codegen

e Cgenforobjexp.mname(argl):

push self

Cool Object Layout: Dyn. Dispatch Codegen

e Cgenforobjexp.mname(argl):

push self
push fp

Cool Object Layout: Dyn. Dispatch Codegen

e Cgenforobjexp.mname(argl):

push self
push fp

Cool Object Layout: Dyn. Dispatch Codegen

e Cgenforobjexp.mname(argl):

push self
push fp

pushril : push argl

Cool Object Layout: Dyn. Dispatch Codegen

e Cgenforobjexp.mname(argl):

push self
push fp

pushril : push argl

Cool Object Layout: Dyn. Dispatch Codegen

e Cgenforobjexp.mname(argl):

push self
push fp

pushril : push argl

bz r1 dispatch_on_void_error

Cool Object Layout: Dyn. Dispatch Codegen

e Cgenforobjexp.mname(argl):

push self
push fp

pushrl ; push argl

bz r1 dispatch_on_void_error
push ril : Will be “self” for callee

Cool Object Layout: Dyn. Dispatch Codegen

e Cgenforobjexp.mname(argl):

push self
push fp

pushrl ; push argl
bz r1 dispatch_on_void_error

push ril : Will be “self” for callee
Id temp<-ri[2] : temp <- vtable

Cool Object Layout: Dyn. Dispatch Codegen

e Cgenforobjexp.mname(argl):

push self

push fp

cgen(argl)

pushril : push argl

cgen(objexp)

bz r1 dispatch_on_void_error

pushril : will be “self” for callee

Id temp<-ri[2] : temp <- vtable

Id temp <- temp[X] : X is offset of mname in vtables
: for objects of typeof(objexp)

Cool Object Layout: Dyn. Dispatch Codegen

e Cgenforobjexp.mname(argl):

push self

push fp

cgen(argl)

pushril : push argl

cgen(objexp)

bz r1 dispatch_on_void_error

pushril : will be “self” for callee

Id temp<-ri[2] : temp <- vtable

Id temp <- temp[X] : X is offset of mname in vtables
: for objects of typeof(objexp)

call temp

Cool Object Layout: Dyn. Dispatch Codegen

e Cgenforobjexp.mname(argl):

push self

push fp

cgen(argl)

pushril : push argl

cgen(objexp)

bz r1 dispatch_on_void_error

pushril : will be “self” for callee

Id temp<-ri[2] : temp <- vtable

Id temp <- temp[X] : X is offset of mname in vtables
: for objects of typeof(objexp)

call temp

pop fp

Course Announcements

e Werecently fixed a bug in the reference compiler’s x86-64
module. Only use Cool version 1.39 for compiling to x86.
o There will be an extra credit question on the midterm asking
why | had to do this, if you want to do a comparison.
o | will also award extra credit if you can find another bug in the
reference compiler
e Don'’t forget thereis a midterm in this class on Wednesday!
o Review session: tonight at 5pm (virtually)
o Extra office half-hours tomorrow at 10am, 4:30pm
e Hopefully you started PA3c3 over break
o itsduedateis

