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module. Only use Cool version 1.39 for compiling to x86.
○ There will be an extra credit question on the midterm asking 

why I had to do this, if you want to do a comparison.
○ I will also award extra credit if you can find another bug in the 

reference compiler
● Don’t forget there is a midterm in this class on Wednesday!

○ Review session: tonight at 5pm (virtually)
○ Extra office half-hours tomorrow at 10am, 4:30pm

● Hopefully you started PA3c3 over break
○ its due date is one week from today
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○ Stack machine basics
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○ Stack discipline, calling convention for our stack machine

■ with a bit of optimization thrown in to give you a taste of 
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○ Finish basics of stack machine codegen (i.e., variables, temps)
○ Object layout and its interactions with subtyping
○ Dispatch tables/vtables
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results
○ all operations read their inputs off of the stack
○ to reduce memory usage, keep the top of the stack in a 

special accumulator register
● It is critical that the stack is preserved across the evaluation of 

subexpressions
○ this lets us write a recursive descent code generator

● Last time, we saw how to generate Cool-ASM using a stack 
machine for arithmetic expressions (add/subtract), if, and 
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● Variable references are the last construct
● The “variables” of a function are just its parameters

○ They are all in the AR 
○ Pushed by the caller

● Problem: because the stack grows when intermediate results are 
saved, the variables are not at a fixed offset from sp
○ Challenge question: what are they at a fixed offset from?
○ Answer: the frame pointer

■ Always points to the return address on the stack
● = the value of sp on function entry

■ It doesn’t move => args on the stack are at a fixed offset
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Code Generation: Variables

● Example: For a function def f(x
1

, x
2

) = e the activation and frame 
pointer are set up as follows:

● x
1

 (first parameter) is at fp + 2
● x

2
 (second parameter) is at fp + 1

● Thus:

cgen(x
i
) = 

ld r1 <- fp[z] 

● where  z ≈ n+1 - i 
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Summary

● The activation record must be designed together with the code 
generator

● Code generation can be done by recursive traversal of the AST
● As you write your compiler, we recommend starting with a stack 

machine (simpler!)
○ ./cool –asm generates Cool-ASM stack machine code for 

Cool
■ use this to help you with PA3!

● Production compilers do different things:
○ keep as many values as possible in registers, etc
○ save this stuff for PA4
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● The stack machine code layout we've 
described so far has activation records 
and intermediate results interleaved on 
the stack.
○ Advantage: Very simple code 

generation (great for PA3)
○ Disadvantage: Very slow code (bad 

for PA4)
■ Storing and loading temporaries 

requires a store/load and sp 
adjustment
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Temporaries: A Better Way

● Idea: Keep temporaries in the AR
○ Creates work for us: the code generator must assign space 

in the AR for each temporary
○ Therefore, we need to know how many temporaries there 

are!
● In other words, our compiler must determine:

○ What intermediate values are placed on the stack?
○ How many slots are needed in the AR to hold these values?
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needed to evaluate e

● Example: NT(e
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○ Needs at least as many 

temporaries as NT(e
1

)
○ Needs at least as many 

temporaries as NT(e
2

) + 1
● Insight: Space used for 

temporaries in e
1

 can be reused 
for temporaries in e
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1
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● NT(int) = 0
● NT(id) = 0

In class exercise: what is NT(def fib(x) = 
if x = 1 then 0 else 

if x = 2 then 1 
else fib(x - 1) + fib(x – 2))?
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● For a function definition f(x
1

, ..., x
n
) = e the AR has

n + NT(e) + 2 elements (so far):
○ n arguments
○ NT(e) locations for intermediate results 
○ Return address
○ Frame pointer

high addresses
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Revised Code Generation

● Code generation must know how many temporaries are in 
use at each point

● Add a new argument to code generation: the position of the 
next available temporary:

cgen(e, n) : generate code for e and use temporaries 
whose address is (fp - n) or lower
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push r1
cgen(e
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pop t1
add r1 <- t1 r1
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1

 + e
2

, nt)  =
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1
, nt)  

st fp[-nt] <- r1
cgen(e

2
, nt + 1)

ld temp <- fp[-nt]
add r1 <- t1 r1

Old: New:

Where are the savings?
(Hint: “push” is more expensive 
than it looks…)
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Notes: Temporaries

● The temporary area is used like a small, fixed-size stack
● Exercise that might help if you are struggling with PA3c3: 

Write out cgen for other constructs
● Hint: on function entry, you'll have to increment something 

by NT(e)
○ ... and on function exit, decrement it ...
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● The remainder of today will be spent on two primary topics:
○ object layout in object-oriented languages (i.e., 

subclasses)
○ dynamic dispatch

● These are both tricky because of the Liskov substitution 
principle: If B is a subclass of A, then an object of class B can 
be used wherever an object of class A is expected
○ This means that code in class A must work unmodified 

on an object of class B
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Object Layout

● An object is like a struct in C
○ The reference foo.field is an index into a foo struct at an 

offset corresponding to field
● Objects in Cool are implemented this way

○ Objects are laid out in contiguous memory
○ Each attribute stored at a fixed offset in object
○ When a method is invoked, the object becomes self and 

the fields are the object’s attributes
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pointer) is a pointer to a 
table of methods
● More on this later
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● Note contiguous 
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Cool Object Layout

● The first three words of each Cool object contains header 
information:

0

1

2

3

4

…

Class Type Tag

Object Size

Dispatch / Vtable Pointer

Attribute 1

Attribute 2

…

Offset

Note this is a convention 
that we made up, but it is 
similar to how Java and 
C++ lay things out. For 
example, you could swap 
#1 and #2 without loss.
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Object Layout: Key Point

● Key Observation: Given a layout for class A, a layout for 
subclass B can be defined by extending the layout of A with 
additional slots for the additional attributes of B
○ (i.e., append new fields at the bottom)
○ leaves the layout of A unchanged (B is an extension)
○ this is where the “extends” keyword in Java etc comes 

from
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Class A {
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};

Class B inherits A {
b: Int <- 2;
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};
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h(): Int { a <- a * c };

};
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Object Layout: Subclass Invariant

● The offset for an attribute is the same in a class and all of its 
subclasses
○ This choice allows any method defined for an A

1
 to be 

used on a subclass A
2

■ without any change to the implementation!
● Consider layout for A
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 object
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 object
Challenge question: 
what about multiple 
inheritance, as in C++?
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Class A {
a: Int <- 0;
d: Int <- 1;
f(): Int { a <- a + d };

};

Class B inherits A {
b: Int <- 2;
f(): Int { a }; // Override 
g(): Int { a <- a - b };

};

Class C inherits A {
c: Int <- 3;
h(): Int { a <- a * c };

};

Consider f() and g()
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Cool Object Layout: Dynamic Dispatch

● Consider  e.g()
○ g refers to method in B if e is a B 

● Consider  e.f()
○ f refers to method in A if f is an A or C (inherited in the 

case of C)
○ f refers to method in B for a B object

● There is a correspondence here: the implementation of 
methods and dynamic dispatch strongly resembles the 
implementation of attributes
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Cool Object Layout: Dispatch Tables

● Assumption: every class has a fixed set of methods (including 
inherited methods)

● A dispatch table (or virtual function table or vtable) indexes 
these methods
○ A vtable is an array of method entry points 

■ Thus, a vtable is an array of function pointers.
● A method f lives at a fixed offset in the dispatch table for a 

class and all of its subclasses
○ this works exactly the same way that attributes do
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Cool Object Layout: Dispatch Table Example

● The dispatch table for class 
A has only 1 method

● The tables for B and C 
extend the table for A with 
more methods

● Because methods can be 
overridden, the method for 
f is not the same in every 
class, but is always at the 
same offset
○ (i.e., offset 0 here)
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Cool Object Layout: Using Dispatch Tables

● The dispatch pointer in an object of class X points to the dispatch 
table for class X
○ i.e., all objects of class X share one table

● Every method f of class X is assigned an offset Of in the dispatch 
table at compile time

● To implement a dynamic dispatch e.f() we:
○ Evaluate e, obtaining an object x
○ Find D by reading the dispatch-table field of x 
○ Call D[Of](x)

■ D is the dispatch table for x
■ In the call, self is bound to x (why?)
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Cool Object Layout: Dyn. Dispatch Codegen

● Cgen for objexp.mname(arg1):

push self
push fp
cgen(arg1)
push r1 ; push arg1
cgen(objexp)
bz r1 dispatch_on_void_error
push r1 ; will be “self” for callee
ld temp<-r1[2] ; temp <- vtable
ld temp <- temp[X] ; X is offset of mname in vtables 

; for objects of typeof(objexp)
call temp
pop fp



Course Announcements

● We recently fixed a bug in the reference compiler’s x86-64 
module. Only use Cool version 1.39 for compiling to x86.
○ There will be an extra credit question on the midterm asking 

why I had to do this, if you want to do a comparison.
○ I will also award extra credit if you can find another bug in the 

reference compiler
● Don’t forget there is a midterm in this class on Wednesday!

○ Review session: tonight at 5pm (virtually)
○ Extra office half-hours tomorrow at 10am, 4:30pm

● Hopefully you started PA3c3 over break
○ its due date is one week from today


