
Code Generation
Martin Kellogg

Course Announcements

● PA3c2 (TAC) is due later this week (“before spring break”)
○ you should already have started, or you are behind
○ if there is demand from the class, I will consider a short

extension on this assignment to e.g., Monday
● I have become aware of a bug in the reference compiler’s x86-64

module; a fix is forthcoming. For now, don’t trust it.
● Don’t forget there is a midterm in this class the week after spring

break!

Agenda

● In this lecture (and, unfortunately, the one on the Monday after
spring break…) I am going to show you how to do code generation
for a stack machine (“Cool ASM”/”Cool bytecode”)

Agenda

● In this lecture (and, unfortunately, the one on the Monday after
spring break…) I am going to show you how to do code generation
for a stack machine (“Cool ASM”/”Cool bytecode”)
○ Including all of the complexity of handling objects, etc.

Agenda

● In this lecture (and, unfortunately, the one on the Monday after
spring break…) I am going to show you how to do code generation
for a stack machine (“Cool ASM”/”Cool bytecode”)
○ Including all of the complexity of handling objects, etc.

● A stack machine is simpler than the x86-64 we saw on Monday
○ This is on purpose (where’s the fun if I make it too easy…)

Agenda

● In this lecture (and, unfortunately, the one on the Monday after
spring break…) I am going to show you how to do code generation
for a stack machine (“Cool ASM”/”Cool bytecode”)
○ Including all of the complexity of handling objects, etc.

● A stack machine is simpler than the x86-64 we saw on Monday
○ This is on purpose (where’s the fun if I make it too easy…)

● Hard PA3 task for you: merge…

Agenda

● In this lecture (and, unfortunately, the one on the Monday after
spring break…) I am going to show you how to do code generation
for a stack machine (“Cool ASM”/”Cool bytecode”)
○ Including all of the complexity of handling objects, etc.

● A stack machine is simpler than the x86-64 we saw on Monday
○ This is on purpose (where’s the fun if I make it too easy…)

● Hard PA3 task for you: merge…
○ …what you know about x86-64 (i.e., last lecture)

Agenda

● In this lecture (and, unfortunately, the one on the Monday after
spring break…) I am going to show you how to do code generation
for a stack machine (“Cool ASM”/”Cool bytecode”)
○ Including all of the complexity of handling objects, etc.

● A stack machine is simpler than the x86-64 we saw on Monday
○ This is on purpose (where’s the fun if I make it too easy…)

● Hard PA3 task for you: merge…
○ …what you know about x86-64 (i.e., last lecture)
○ …with what you know about code generation for a simpler

target (this lecture)

Agenda (for real): two lectures on…

● Stack machine basics
○ accumulator, stack pointer

Agenda (for real): two lectures on…

● Stack machine basics
○ accumulator, stack pointer

● Stack discipline, calling convention for our stack machine
○ with a bit of optimization thrown in to give you a taste of the

idea

Agenda (for real): two lectures on…

● Stack machine basics
○ accumulator, stack pointer

● Stack discipline, calling convention for our stack machine
○ with a bit of optimization thrown in to give you a taste of the

idea
● Object layout

○ and its interactions with subtyping

Agenda (for real): two lectures on…

● Stack machine basics
○ accumulator, stack pointer

● Stack discipline, calling convention for our stack machine
○ with a bit of optimization thrown in to give you a taste of the

idea
● Object layout

○ and its interactions with subtyping
● Dispatch tables/vtables

○ this gets us to dynamic dispatch

Agenda (for real): two lectures on…

● Stack machine basics
○ accumulator, stack pointer

● Stack discipline, calling convention for our stack machine
○ with a bit of optimization thrown in to give you a taste of the

idea
● Object layout

○ and its interactions with subtyping
● Dispatch tables/vtables

○ this gets us to dynamic dispatch

Q: What’s on the midterm?
A: Only what we get
through today.I probably
won

Agenda (for real): two lectures on…

● Stack machine basics
○ accumulator, stack pointer

● Stack discipline, calling convention for our stack machine
○ with a bit of optimization thrown in to give you a taste of the

idea
● Object layout

○ and its interactions with subtyping
● Dispatch tables/vtables

○ this gets us to dynamic dispatch

Q: What’s on the midterm?
A: Only what we get
through today. I probably
won’t ask much about it.

Stack Machines

Stack Machines

● A simple evaluation model
○ No variables or registers

Stack Machines

● A simple evaluation model
○ No variables or registers

● A stack of values for intermediate results
○ Imagine a calculator that uses “reverse Polish” notation

Stack Machines

● A simple evaluation model
○ No variables or registers

● A stack of values for intermediate results
○ Imagine a calculator that uses “reverse Polish” notation

● Think of it this way:
○ I am going to explain how you’d build “Cool javac”; your

compiler is supposed to be “Cool g++”.

Stack Machines

● A simple evaluation model
○ No variables or registers

● A stack of values for intermediate results
○ Imagine a calculator that uses “reverse Polish” notation

● Think of it this way:
○ I am going to explain how you’d build “Cool javac”; your

compiler is supposed to be “Cool g++”.
■ “Cool javac” : Cool -> stack machine bytecode

● A “JVM” is also necessary to interpret the bytecode!

Stack Machines

● A simple evaluation model
○ No variables or registers

● A stack of values for intermediate results
○ Imagine a calculator that uses “reverse Polish” notation

● Think of it this way:
○ I am going to explain how you’d build “Cool javac”; your

compiler is supposed to be “Cool g++”.
■ “Cool javac” : Cool -> stack machine bytecode

● A “JVM” is also necessary to interpret the bytecode!
■ “Cool g++” : Cool -> x86-64

Stack Machines: Example Program

● Consider two instructions:

Stack Machines: Example Program

● Consider two instructions:
○ push i

■ place the integer i on top of the stack

Stack Machines: Example Program

● Consider two instructions:
○ push i

■ place the integer i on top of the stack
○ add

■ pop two elements, add them and put the result back on
the stack

Stack Machines: Example Program

● Consider two instructions:
○ push i

■ place the integer i on top of the stack
○ add

■ pop two elements, add them and put the result back on
the stack

● A program to compute 7 + 5:
push 7
push 5
add

Stack Machines: Example Program

● Consider two instructions:
○ push i

■ place the integer i on top of the stack
○ add

■ pop two elements, add them and put the result back on
the stack

● A program to compute 7 + 5:
push 7
push 5
add

Quick poll: how much
does this have in common
with the 280 project?
(determines how fast I go)

Stack Machines: Example Program

● Each instruction:

Stack Machines: Example Program

● Each instruction:
○ Takes its operands from the top of the stack

Stack Machines: Example Program

● Each instruction:
○ Takes its operands from the top of the stack
○ Removes those operands from the stack

Stack Machines: Example Program

● Each instruction:
○ Takes its operands from the top of the stack
○ Removes those operands from the stack
○ Computes the required operation on them

Stack Machines: Example Program

● Each instruction:
○ Takes its operands from the top of the stack
○ Removes those operands from the stack
○ Computes the required operation on them
○ Pushes the result on the stack

Stack Machines: Example Program

● Each instruction:
○ Takes its operands from the top of the stack
○ Removes those operands from the stack
○ Computes the required operation on them
○ Pushes the result on the stack

…stack

Stack Machines: Example Program

● Each instruction:
○ Takes its operands from the top of the stack
○ Removes those operands from the stack
○ Computes the required operation on them
○ Pushes the result on the stack

…stack

push 7

…

7

Stack Machines: Example Program

● Each instruction:
○ Takes its operands from the top of the stack
○ Removes those operands from the stack
○ Computes the required operation on them
○ Pushes the result on the stack

…stack

push 7

…

7

push 5

…

7

5

Stack Machines: Example Program

● Each instruction:
○ Takes its operands from the top of the stack
○ Removes those operands from the stack
○ Computes the required operation on them
○ Pushes the result on the stack

…stack

push 7

…

7

push 5

…

7

5

…

12

add

+

Stack Machines: Good For Compiler Writers

● Stack machines have a very nice property from our perspective
as compiler writers:

Stack Machines: Good For Compiler Writers

● Stack machines have a very nice property from our perspective
as compiler writers:

○ Each operation takes operands from the same place and
puts results in the same place

Stack Machines: Good For Compiler Writers

● Stack machines have a very nice property from our perspective
as compiler writers:

○ Each operation takes operands from the same place and
puts results in the same place

● This means a uniform compilation scheme

Stack Machines: Good For Compiler Writers

● Stack machines have a very nice property from our perspective
as compiler writers:

○ Each operation takes operands from the same place and
puts results in the same place

● This means a uniform compilation scheme
○ We don’t have to worry about where operands are (“they’re

on the stack”)

Stack Machines: Good For Compiler Writers

● Stack machines have a very nice property from our perspective
as compiler writers:

○ Each operation takes operands from the same place and
puts results in the same place

● This means a uniform compilation scheme
○ We don’t have to worry about where operands are (“they’re

on the stack”)
● And therefore means we can write a very simple compiler

Stack Machines: Good For Compiler Writers

● Stack machines have a very nice property from our perspective
as compiler writers:

○ Each operation takes operands from the same place and
puts results in the same place

● This means a uniform compilation scheme
○ We don’t have to worry about where operands are (“they’re

on the stack”)
● And therefore means we can write a very simple compiler

○ Many/most compilers start by targeting a stack machine

Stack Machines: Good For Compiler Writers

● Stack machines have a very nice property from our perspective
as compiler writers:

○ Each operation takes operands from the same place and
puts results in the same place

● This means a uniform compilation scheme
○ We don’t have to worry about where operands are (“they’re

on the stack”)
● And therefore means we can write a very simple compiler

○ Many/most compilers start by targeting a stack machine
○ A good idea for you, too! (in PA3)

Stack Machines: Advantages

Stack Machines: Advantages

● Location of the operands is implicit
○ Always on the top of the stack

Stack Machines: Advantages

● Location of the operands is implicit
○ Always on the top of the stack

● No need to specify operands explicitly

Stack Machines: Advantages

● Location of the operands is implicit
○ Always on the top of the stack

● No need to specify operands explicitly
● No need to specify the location of the result

Stack Machines: Advantages

● Location of the operands is implicit
○ Always on the top of the stack

● No need to specify operands explicitly
● No need to specify the location of the result
● Instruction “add” as opposed to “add r1, r2”

○ Smaller encoding of instructions
○ More compact programs (great for network!)

Stack Machines: Advantages

● Location of the operands is implicit
○ Always on the top of the stack

● No need to specify operands explicitly
● No need to specify the location of the result
● Instruction “add” as opposed to “add r1, r2”

○ Smaller encoding of instructions
○ More compact programs (great for network!)

● This is one reason why Java bytecode uses a stack evaluation
model

Stack Machines: A Big Disadvantage

Stack Machines: A Big Disadvantage

● The add instruction does 3 memory operations
○ Two reads and one write to the stack

Stack Machines: A Big Disadvantage

● The add instruction does 3 memory operations
○ Two reads and one write to the stack

■ This is very slow!

cache access

clock cycles?

Stack Machines: A Big Disadvantage

● The add instruction does 3 memory operations
○ Two reads and one write to the stack

■ This is very slow!
○ The top of the stack is “frequently” accessed (so much)

cache access

clock cycles?

Stack Machines: A Big Disadvantage

● The add instruction does 3 memory operations
○ Two reads and one write to the stack

■ This is very slow!
○ The top of the stack is “frequently” accessed (so much)

cache access

clock cycles?

● We can do one simple optimization to
mitigate this disadvantage

Stack Machines: A Big Disadvantage

● The add instruction does 3 memory operations
○ Two reads and one write to the stack

■ This is very slow!
○ The top of the stack is “frequently” accessed (so much)

cache access

clock cycles?

● We can do one simple optimization to
mitigate this disadvantage
○ Bonus pedagogical benefit: I can

mention again that you shouldn’t
prematurely optimize on PA3

Stack Machines: A Big Disadvantage

● The add instruction does 3 memory operations
○ Two reads and one write to the stack

■ This is very slow!
○ The top of the stack is “frequently” accessed (so much)

cache access

clock cycles?

● We can do one simple optimization to
mitigate this disadvantage
○ Bonus pedagogical benefit: I can

mention again that you shouldn’t
prematurely optimize on PA3

● Can anyone guess what it is?

Stack Machines: Accumulator Register

● Key insight: keep the top of the stack in a register (called the
accumulator)

Stack Machines: Accumulator Register

● Key insight: keep the top of the stack in a register (called the
accumulator)
○ This should remind you of how fold works

■ It’s almost like functional programming is relevant to the rest of the class…

Stack Machines: Accumulator Register

● Key insight: keep the top of the stack in a register (called the
accumulator)
○ This should remind you of how fold works

■ It’s almost like functional programming is relevant to the rest of the class…

○ Register accesses are much faster

Stack Machines: Accumulator Register

● Key insight: keep the top of the stack in a register (called the
accumulator)
○ This should remind you of how fold works

■ It’s almost like functional programming is relevant to the rest of the class…

○ Register accesses are much faster
● The add instruction is now acc <- acc + top_of_stack

○ Only one memory operation, much faster!

Stack Machines: Accumulator Invariants

Stack Machines: Accumulator Invariants

● The result of computing an expression is always in the
accumulator

Stack Machines: Accumulator Invariants

● The result of computing an expression is always in the
accumulator

● For an operation op(e1,...,en), push the accumulator on the
stack after computing each of e1, ..., en-1

Stack Machines: Accumulator Invariants

● The result of computing an expression is always in the
accumulator

● For an operation op(e1,...,en), push the accumulator on the
stack after computing each of e1, ..., en-1
○ en's result is in the accumulator before op

Stack Machines: Accumulator Invariants

● The result of computing an expression is always in the
accumulator

● For an operation op(e1,...,en), push the accumulator on the
stack after computing each of e1, ..., en-1
○ en's result is in the accumulator before op
○ After the operation pop n-1 values

Stack Machines: Accumulator Invariants

● The result of computing an expression is always in the
accumulator

● For an operation op(e1,...,en), push the accumulator on the
stack after computing each of e1, ..., en-1
○ en's result is in the accumulator before op
○ After the operation pop n-1 values

● After computing an expression the stack is as before

Stack Machines: Accumulator Invariants

● The result of computing an expression is always in the
accumulator

● For an operation op(e1,...,en), push the accumulator on the
stack after computing each of e1, ..., en-1
○ en's result is in the accumulator before op
○ After the operation pop n-1 values

● After computing an expression the stack is as before

Let’s look at an example…

Stack Machines: Accumulator Example

● Computing 7 + 5 with an accumulator:

…stack

acc

Stack Machines: Accumulator Example

● Computing 7 + 5 with an accumulator:

…stack

acc

acc <- 7
push acc

…

7

7

Stack Machines: Accumulator Example

● Computing 7 + 5 with an accumulator:

…stack

acc

acc <- 7
push acc

…

7

7

acc <- 5

…

7

5

Stack Machines: Accumulator Example

● Computing 7 + 5 with an accumulator:

…stack

acc

acc <- 7
push acc

…

7

7

acc <- 5

…

7

5

acc <- acc + top_of_stack
pop

…

12

+

Stack Machines: Bigger Example: 3 + (7 + 5)

Code Acc Stack

Stack Machines: Bigger Example: 3 + (7 + 5)

Code
acc <- 3

Acc
3

Stack
<init>

Stack Machines: Bigger Example: 3 + (7 + 5)

Code
acc <- 3
push acc

Acc
3
3

Stack
<init>
3, <init>

Stack Machines: Bigger Example: 3 + (7 + 5)

Code
acc <- 3
push acc
acc <- 7

Acc
3
3
7

Stack
<init>
3, <init>
3, <init>

Stack Machines: Bigger Example: 3 + (7 + 5)

Code
acc <- 3
push acc
acc <- 7
push acc

Acc
3
3
7
7

Stack
<init>
3, <init>
3, <init>
7, 3, <init>

Stack Machines: Bigger Example: 3 + (7 + 5)

Code
acc <- 3
push acc
acc <- 7
push acc
acc <- 5

Acc
3
3
7
7
5

Stack
<init>
3, <init>
3, <init>
7, 3, <init>
7, 3, <init>

Stack Machines: Bigger Example: 3 + (7 + 5)

Code
acc <- 3
push acc
acc <- 7
push acc
acc <- 5
acc <- acc + top_of_stack

Acc
3
3
7
7
5
12

Stack
<init>
3, <init>
3, <init>
7, 3, <init>
7, 3, <init>
7, 3, <init>

Stack Machines: Bigger Example: 3 + (7 + 5)

Code
acc <- 3
push acc
acc <- 7
push acc
acc <- 5
acc <- acc + top_of_stack
pop

Acc
3
3
7
7
5
12
12

Stack
<init>
3, <init>
3, <init>
7, 3, <init>
7, 3, <init>
7, 3, <init>
3, <init>

Stack Machines: Bigger Example: 3 + (7 + 5)

Code
acc <- 3
push acc
acc <- 7
push acc
acc <- 5
acc <- acc + top_of_stack
pop
acc <- acc + top_of_stack

Acc
3
3
7
7
5
12
12
15

Stack
<init>
3, <init>
3, <init>
7, 3, <init>
7, 3, <init>
7, 3, <init>
3, <init>
3, <init>

Stack Machines: Bigger Example: 3 + (7 + 5)

Code
acc <- 3
push acc
acc <- 7
push acc
acc <- 5
acc <- acc + top_of_stack
pop
acc <- acc + top_of_stack
pop

Acc
3
3
7
7
5
12
12
15
15

Stack
<init>
3, <init>
3, <init>
7, 3, <init>
7, 3, <init>
7, 3, <init>
3, <init>
3, <init>
<init>

Stack Machines: Accumulator Invariants

● The result of computing an expression is always in the
accumulator

● For an operation op(e1,...,en), push the accumulator on the
stack after computing each of e1, ..., en-1
○ en's result is in the accumulator before op
○ After the operation pop n-1 values

● After computing an expression the stack is as before
○ It is CRITICAL that the stack is preserved across the evaluation

of a subexpression

Stack Machines: Accumulator Invariants

● The result of computing an expression is always in the
accumulator

● For an operation op(e1,...,en), push the accumulator on the
stack after computing each of e1, ..., en-1
○ en's result is in the accumulator before op
○ After the operation pop n-1 values

● After computing an expression the stack is as before
○ It is CRITICAL that the stack is preserved across the evaluation

of a subexpression
■ Stack before evaluating 7 + 5 is 3,<init>

Stack Machines: Accumulator Invariants

● The result of computing an expression is always in the
accumulator

● For an operation op(e1,...,en), push the accumulator on the
stack after computing each of e1, ..., en-1
○ en's result is in the accumulator before op
○ After the operation pop n-1 values

● After computing an expression the stack is as before
○ It is CRITICAL that the stack is preserved across the evaluation

of a subexpression
■ Stack before evaluating 7 + 5 is 3,<init>
■ Stack after evaluating 7 + 5 is also 3,<init>

From Stack Machines to RISC

● The “compiler” we will outline in this two-lecture series will
generate code for a stack machine with an accumulator

From Stack Machines to RISC

● The “compiler” we will outline in this two-lecture series will
generate code for a stack machine with an accumulator
○ You might want to run the resulting code on a processor

From Stack Machines to RISC

● The “compiler” we will outline in this two-lecture series will
generate code for a stack machine with an accumulator
○ You might want to run the resulting code on a processor

● To do so, we'll implement stack machine instructions using
Cool-ASM instructions and registers

From Stack Machines to RISC

● The “compiler” we will outline in this two-lecture series will
generate code for a stack machine with an accumulator
○ You might want to run the resulting code on a processor

● To do so, we'll implement stack machine instructions using
Cool-ASM instructions and registers
○ Cool-ASM is a bytecode format described in the CRM

■ I will assume access to a Cool-ASM interpreter

From Stack Machines to RISC

● The “compiler” we will outline in this two-lecture series will
generate code for a stack machine with an accumulator
○ You might want to run the resulting code on a processor

● To do so, we'll implement stack machine instructions using
Cool-ASM instructions and registers
○ Cool-ASM is a bytecode format described in the CRM

■ I will assume access to a Cool-ASM interpreter
○ Fun PA3 activity for you: map this Cool-ASM to x86-64

■ effectively, this would be using Cool-ASM as an IR!

From Stack Machines to RISC

● The “compiler” we will outline in this two-lecture series will
generate code for a stack machine with an accumulator
○ You might want to run the resulting code on a processor

● To do so, we'll implement stack machine instructions using
Cool-ASM instructions and registers
○ Cool-ASM is a bytecode format described in the CRM

■ I will assume access to a Cool-ASM interpreter
○ Fun PA3 activity for you: map this Cool-ASM to x86-64

■ effectively, this would be using Cool-ASM as an IR!
■ you are welcome to do so in your compiler if you want

● would it come before or after three-address code?

Cool-ASM in Brief
● Cool-ASM is a RISC-style assembly language

Cool-ASM in Brief
● Cool-ASM is a RISC-style assembly language

○ An assembly language is an untyped, unsafe, low-level, fast
programming language with few-to-no primitives.

Cool-ASM in Brief
● Cool-ASM is a RISC-style assembly language

○ An assembly language is an untyped, unsafe, low-level, fast
programming language with few-to-no primitives.

● A register is a fast-access untyped global variable shared by the entire
assembly program.

Cool-ASM in Brief
● Cool-ASM is a RISC-style assembly language

○ An assembly language is an untyped, unsafe, low-level, fast
programming language with few-to-no primitives.

● A register is a fast-access untyped global variable shared by the entire
assembly program.
○ Cool-ASM: 8 general registers and 3 special ones (stack pointer,

frame pointer, return address)

Cool-ASM in Brief
● Cool-ASM is a RISC-style assembly language

○ An assembly language is an untyped, unsafe, low-level, fast
programming language with few-to-no primitives.

● A register is a fast-access untyped global variable shared by the entire
assembly program.
○ Cool-ASM: 8 general registers and 3 special ones (stack pointer,

frame pointer, return address)
● An instruction is a primitive statement in assembly language that

operates on registers
○ Cool-ASM: add, jmp, ld, push, …

Cool-ASM in Brief
● Cool-ASM is a RISC-style assembly language

○ An assembly language is an untyped, unsafe, low-level, fast
programming language with few-to-no primitives.

● A register is a fast-access untyped global variable shared by the entire
assembly program.
○ Cool-ASM: 8 general registers and 3 special ones (stack pointer,

frame pointer, return address)
● An instruction is a primitive statement in assembly language that

operates on registers
○ Cool-ASM: add, jmp, ld, push, …

● A load-store architecture: bring values in to registers from memory to
operate on them.

Cool-ASM in Brief: Sample Instructions

add r2 <- r5 r2
li r5 <- 183
ld r2 <- r1[5]
st r1[6] <- r7
my_label:
push r1
sub r1 <- r1 1
bnz r1 my_label

; r2 = r5 + r2
; r5 = 183
; r2 = *(r1+5)
; *(r1+6) = r7
-- dashdash also a comment
; *sp = r1; sp --;
; r1 -- ;
; if (r1 != 0) goto my_label

Cool-ASM in Brief: Sample Instructions

add r2 <- r5 r2
li r5 <- 183
ld r2 <- r1[5]
st r1[6] <- r7
my_label:
push r1
sub r1 <- r1 1
bnz r1 my_label

; r2 = r5 + r2
; r5 = 183
; r2 = *(r1+5)
; *(r1+6) = r7
-- dashdash also a comment
; *sp = r1; sp --;
; r1 -- ;
; if (r1 != 0) goto my_label

Details of Cool-ASM don’t
matter much; you’re not
required to implement this. See
the CRM if you want full details.

Simulating a Stack Machine….

● The accumulator is kept in register r1

Simulating a Stack Machine….

● The accumulator is kept in register r1
○ This is just a convention. You could pick r2.

Simulating a Stack Machine….

● The accumulator is kept in register r1
○ This is just a convention. You could pick r2.

● The stack is kept in memory

Simulating a Stack Machine….

● The accumulator is kept in register r1
○ This is just a convention. You could pick r2.

● The stack is kept in memory
● The stack grows towards lower addresses

○ Standard architecture convention (MIPS)

Simulating a Stack Machine….

● The accumulator is kept in register r1
○ This is just a convention. You could pick r2.

● The stack is kept in memory
● The stack grows towards lower addresses

○ Standard architecture convention (MIPS)
● The address of the next unused location on the stack is kept in

register sp

Simulating a Stack Machine….

● The accumulator is kept in register r1
○ This is just a convention. You could pick r2.

● The stack is kept in memory
● The stack grows towards lower addresses

○ Standard architecture convention (MIPS)
● The address of the next unused location on the stack is kept in

register sp
○ The top of the stack is always at address sp + 1

Simulating a Stack Machine….

● The accumulator is kept in register r1
○ This is just a convention. You could pick r2.

● The stack is kept in memory
● The stack grows towards lower addresses

○ Standard architecture convention (MIPS)
● The address of the next unused location on the stack is kept in

register sp
○ The top of the stack is always at address sp + 1

● Cool-ASM “Word Size” = 1 = number of memory cells taken up by
one integer/pointer/string

Simulating a Stack Machine….

● The accumulator is kept in register r1
○ This is just a convention. You could pick r2.

● The stack is kept in memory
● The stack grows towards lower addresses

○ Standard architecture convention (MIPS)
● The address of the next unused location on the stack is kept in

register sp
○ The top of the stack is always at address sp + 1

● Cool-ASM “Word Size” = 1 = number of memory cells taken up by
one integer/pointer/string
○ Note intentional simplification vs x86! This is what makes a

good IR

Trivia Break: Computer Science

This US Navy Rear Admiral is credited with inventing one of the first
compilers for a computer programming language, as well as
popularizing machine-independent languages (particularly COBOL).
The term “debugging” was also popularized when a logbook that is
sometimes erroneously credited to this

person (who was one of the associated

project’s leaders) physically recorded a

moth that had gotten into the relays:

Cool Assembly Example

Stack-machine code for 7 + 5: Equivalent Cool-ASM:

Cool Assembly Example

acc <- 7 li r1 7

Stack-machine code for 7 + 5: Equivalent Cool-ASM:

Cool Assembly Example

acc <- 7 li r1 7
push acc sw sp[0] <- r1

sub sp <- sp 1

Stack-machine code for 7 + 5: Equivalent Cool-ASM:

Cool Assembly Example

acc <- 7 li r1 7
push acc sw sp[0] <- r1

sub sp <- sp 1
acc <- 5 li r1 5

Stack-machine code for 7 + 5: Equivalent Cool-ASM:

Cool Assembly Example

acc <- 7 li r1 7
push acc sw sp[0] <- r1

sub sp <- sp 1
acc <- 5 li r1 5
acc <- acc + top_of_stack lw r2 <- sp[1]

add r1 <- r1 r2

Stack-machine code for 7 + 5: Equivalent Cool-ASM:

Cool Assembly Example

acc <- 7 li r1 7
push acc sw sp[0] <- r1

sub sp <- sp 1
acc <- 5 li r1 5
acc <- acc + top_of_stack lw r2 <- sp[1]

add r1 <- r1 r2
pop add sp <- sp 1

Stack-machine code for 7 + 5: Equivalent Cool-ASM:

Cool Assembly Example

acc <- 7 li r1 7
push acc sw sp[0] <- r1

sub sp <- sp 1
acc <- 5 li r1 5
acc <- acc + top_of_stack lw r2 <- sp[1]

add r1 <- r1 r2
pop add sp <- sp 1

Stack-machine code for 7 + 5: Equivalent Cool-ASM:

We now generalize this to a
simple language…

Stack Instructions

● We have these Cool-ASM instructions:

Stack Instructions

● We have these Cool-ASM instructions:

push rX st sp[0] <- rX
sub sp <- sp 1

Stack Instructions

● We have these Cool-ASM instructions:

push rX st sp[0] <- rX
sub sp <- sp 1

pop rX ld rX <- sp[1]
add sp <- sp 1

Stack Instructions

● We have these Cool-ASM instructions:

push rX st sp[0] <- rX
sub sp <- sp 1

pop rX ld rX <- sp[1]
add sp <- sp 1

rX <- top ld rX <- sp[1]

A Small Language

● We will consider a source language with integers and integer
operations (only, for now)

A Small Language

● We will consider a source language with integers and integer
operations (only, for now)

● Full grammar:

P -> D ; P | D
D -> def id(ARGS) = E
ARGS -> id, ARGS | id
E -> int | id | if E

1
 = E

2
 then E

3
 else E

4
| E

1
 + E

2
 | E

1
 - E

2
 | id(E

1
, …, E

n
)

Reminder of how to read this:
● capital letters are

non-terminals
● italics = lexemes
● “|” separates options

A Small Language (continued)

● The first function definition f is the “main” routine

A Small Language (continued)

● The first function definition f is the “main” routine
● Running the program on input i means computing f(i)

A Small Language (continued)

● The first function definition f is the “main” routine
● Running the program on input i means computing f(i)
● Program for computing the Fibonacci numbers:

def fib(x) =
if x = 1 then

0
else

if x = 2 then
1

else
fib(x - 1) + fib(x – 2)

Code Generation Strategy

Code Generation Strategy

● For each expression e we generate Cool- ASM code that:

Code Generation Strategy

● For each expression e we generate Cool- ASM code that:
○ Computes the value of e in r1 (our accumulator)

Code Generation Strategy

● For each expression e we generate Cool- ASM code that:
○ Computes the value of e in r1 (our accumulator)
○ Preserves sp and the contents of the stack

Code Generation Strategy

● For each expression e we generate Cool- ASM code that:
○ Computes the value of e in r1 (our accumulator)
○ Preserves sp and the contents of the stack

● We define a code generation function cgen(e) whose result is the
code generated for e

Code Generation Strategy

● For each expression e we generate Cool- ASM code that:
○ Computes the value of e in r1 (our accumulator)
○ Preserves sp and the contents of the stack

● We define a code generation function cgen(e) whose result is the
code generated for e

● Like type rules, our code generation function is syntax-directed

Code Generation Strategy

● For each expression e we generate Cool- ASM code that:
○ Computes the value of e in r1 (our accumulator)
○ Preserves sp and the contents of the stack

● We define a code generation function cgen(e) whose result is the
code generated for e

● Like type rules, our code generation function is syntax-directed
○ in other words, it is a big case statement, based on the

structure of the input

Code Generation Strategy

● For each expression e we generate Cool- ASM code that:
○ Computes the value of e in r1 (our accumulator)
○ Preserves sp and the contents of the stack

● We define a code generation function cgen(e) whose result is the
code generated for e

● Like type rules, our code generation function is syntax-directed
○ in other words, it is a big case statement, based on the

structure of the input
■ we will have one code generation rule for constants, one

for addition, one for subtraction, etc.
● one for each kind of expression!

Code Generation: Constants

Code Generation: Constants

● The code to evaluate a constant simply copies it into the
accumulator:

cgen(123) = li r1 123

Code Generation: Constants

● The code to evaluate a constant simply copies it into the
accumulator:

cgen(123) = li r1 123
● Note that this also preserves the stack, as required

Code Generation: Addition

cgen(e
1

 + e
2

) =

Code Generation: Addition

cgen(e
1

 + e
2

) =
cgen(e

1
)

Code Generation: Addition

cgen(e
1

 + e
2

) =
cgen(e

1
)

push r1

Code Generation: Addition

cgen(e
1

 + e
2

) =
cgen(e

1
)

push r1
cgen(e

2
) ;; e2 now in r1

Code Generation: Addition

cgen(e
1

 + e
2

) =
cgen(e

1
)

push r1
cgen(e

2
) ;; e2 now in r1

pop t1

Code Generation: Addition

cgen(e
1

 + e
2

) =
cgen(e

1
)

push r1
cgen(e

2
) ;; e2 now in r1

pop t1 t1 is some unused
“temporary” register

Code Generation: Addition

cgen(e
1

 + e
2

) =
cgen(e

1
)

push r1
cgen(e

2
) ;; e2 now in r1

pop t1
add r1 <- t1 r1

Code Generation: Addition

cgen(e
1

 + e
2

) =
cgen(e

1
)

push r1
cgen(e

2
) ;; e2 now in r1

pop t1
add r1 <- t1 r1

● Possible optimization: put the result of e
1

 directly in register t1?

Code Generation Mistake: Addition Alternative

● Unsafe optimization: put the result of e
1

 directly in register t1?

Code Generation Mistake: Addition Alternative

● Unsafe optimization: put the result of e
1

 directly in register t1?

cgen(e
1

 + e
2

) =
cgen(e

1
)

mov t1 <- r1
cgen(e

2
) ;; e2 now in r1

add r1 <- t1 r1

Code Generation Mistake: Addition Alternative

● Unsafe optimization: put the result of e
1

 directly in register t1?

cgen(e
1

 + e
2

) =
cgen(e

1
)

mov t1 <- r1
cgen(e

2
) ;; e2 now in r1

add r1 <- t1 r1

● To see why this is incorrect, try to generate code for : 3 + (7 + 5)

Code Generation Notes

Code Generation Notes

● The code that we generated for addition is a template with “holes”
for code for evaluating e

1
 and e

2

Code Generation Notes

● The code that we generated for addition is a template with “holes”
for code for evaluating e

1
 and e

2
● Stack-machine code generation is recursive

Code Generation Notes

● The code that we generated for addition is a template with “holes”
for code for evaluating e

1
 and e

2
● Stack-machine code generation is recursive

○ Code for e
1

 + e
2

 consists of code for e
1

 and e
2

 glued together
■ with a bit of code to actually do the addition

Code Generation Notes

● The code that we generated for addition is a template with “holes”
for code for evaluating e

1
 and e

2
● Stack-machine code generation is recursive

○ Code for e
1

 + e
2

 consists of code for e
1

 and e
2

 glued together
■ with a bit of code to actually do the addition

● Implication: code generation can be written as a recursive-descent
tree walk of the AST
○ At least for expressions

Code Generation: Subtraction

cgen(e
1

 - e
2

) =

Code Generation: Subtraction

cgen(e
1

 - e
2

) =
cgen(e

1
)

push r1
cgen(e

2
) ;; e2 now in r1

pop t1
sub r1 <- t1 r1

Code Generation: Subtraction

cgen(e
1

 - e
2

) =
cgen(e

1
)

push r1
cgen(e

2
) ;; e2 now in r1

pop t1
sub r1 <- t1 r1

● Almost identical to addition!
○ only difference is the sub instruction, which does what you’d

expect (subtraction)

Code Generation: If

● To generate code for if, we need control flow instructions

Code Generation: If

● To generate code for if, we need control flow instructions
● Cool-ASM has two that will be useful:

Code Generation: If

● To generate code for if, we need control flow instructions
● Cool-ASM has two that will be useful:

beq r1 r2 label
conditional branch to label if r1 = r2

Code Generation: If

● To generate code for if, we need control flow instructions
● Cool-ASM has two that will be useful:

beq r1 r2 label
conditional branch to label if r1 = r2

jmp label
unconditional jump to label

Code Generation: If

● To generate code for if, we need control flow instructions
● Cool-ASM has two that will be useful:

beq r1 r2 label
conditional branch to label if r1 = r2

jmp label
unconditional jump to label Note the similarity to what x86

provides! How easy would it be
to convert these Cool-ASM
instructions into x86?

Code Generation: If

cgen(if e1 = e2 then e3 else e4) =

Code Generation: If

cgen(if e1 = e2 then e3 else e4) =
cgen(e1)

Code Generation: If

cgen(if e1 = e2 then e3 else e4) =
cgen(e1)
push r1

Code Generation: If

cgen(if e1 = e2 then e3 else e4) =
cgen(e1)
push r1
cgen(e2)

Code Generation: If

cgen(if e1 = e2 then e3 else e4) =
cgen(e1)
push r1
cgen(e2)
pop t1

Code Generation: If

cgen(if e1 = e2 then e3 else e4) =
cgen(e1)
push r1
cgen(e2)
pop t1
beq r1 t1 true_branch ;; else fall through

Code Generation: If

cgen(if e1 = e2 then e3 else e4) =
cgen(e1)
push r1
cgen(e2)
pop t1
beq r1 t1 true_branch ;; else fall through
cgen(e4)

Code Generation: If

cgen(if e1 = e2 then e3 else e4) =
cgen(e1)
push r1
cgen(e2)
pop t1
beq r1 t1 true_branch ;; else fall through
cgen(e4)
jmp end_if

Code Generation: If

cgen(if e1 = e2 then e3 else e4) =
cgen(e1)
push r1
cgen(e2)
pop t1
beq r1 t1 true_branch ;; else fall through
cgen(e4)
jmp end_if

 true_branch:

Code Generation: If

cgen(if e1 = e2 then e3 else e4) =
cgen(e1)
push r1
cgen(e2)
pop t1
beq r1 t1 true_branch ;; else fall through
cgen(e4)
jmp end_if

 true_branch:
cgen(e3)

Code Generation: If

cgen(if e1 = e2 then e3 else e4) =
cgen(e1)
push r1
cgen(e2)
pop t1
beq r1 t1 true_branch ;; else fall through
cgen(e4)
jmp end_if

 true_branch:
cgen(e3)

 end_if:

Trivia Break: Art History

This style of visual arts, architecture, and product
design first appeared in Paris in the early 1910s and
flourished in the US and Europe during the 1920s. It is
characterized by rare and expensive materials, such as
ebony and ivory, exquisite craftsmanship, and the
inclusion of “modern” materials like chrome plating,
stainless steel, and plastic. In New York City, the
Empire State Building, Chrysler Building, and other
buildings from the 1920s and 1930s are monuments to
the style.

Trivia Break: Geography

This lake in Russia is the world’s seventh-largest by surface area (it is
just larger than Belgium). However, unlike most other freshwater
lakes in the world, it is a rift lake: a geologically active rift in the
Earth’s crust at the bottom of the lake is being pulled apart at a rate
of about 4mm per year. This has two important implications for this
lake: it is both the oldest (~25-30 million years old) and deepest (avg.
744m, deepest 1,642m) lake in the world. Because of its depth, it
contains about 22% of the world’s freshwater.

Activation Records

● Recall that an activation record (or stack frame) stores calling
context information on the stack during a function call.

Activation Records

● Recall that an activation record (or stack frame) stores calling
context information on the stack during a function call.
○ Code for function calls/definitions depends on the layout of the

activation record

Activation Records

● Recall that an activation record (or stack frame) stores calling
context information on the stack during a function call.
○ Code for function calls/definitions depends on the layout of the

activation record
● A very simple AR suffices for this language:

Activation Records

● Recall that an activation record (or stack frame) stores calling
context information on the stack during a function call.
○ Code for function calls/definitions depends on the layout of the

activation record
● A very simple AR suffices for this language:

○ The result is always in the accumulator
■ Thus, no need to store the result in the AR

Activation Records

● Recall that an activation record (or stack frame) stores calling
context information on the stack during a function call.
○ Code for function calls/definitions depends on the layout of the

activation record
● A very simple AR suffices for this language:

○ The result is always in the accumulator
■ Thus, no need to store the result in the AR

○ The activation record holds actual parameters
■ For f(x

1
,...,x

n
), push x

1
,...,x

n
 on the stack

■ These are the only variables in this language

Calling Convention

● The calling convention (or stack discipline) guarantees that on
function exit sp is the same as it was on entry

Calling Convention

● The calling convention (or stack discipline) guarantees that on
function exit sp is the same as it was on entry
○ So, no need to save sp explicitly

Calling Convention

● The calling convention (or stack discipline) guarantees that on
function exit sp is the same as it was on entry
○ So, no need to save sp explicitly
○ Our simple AR maintains stack discipline (why?)

Calling Convention

● The calling convention (or stack discipline) guarantees that on
function exit sp is the same as it was on entry
○ So, no need to save sp explicitly
○ Our simple AR maintains stack discipline (why?)

● We do need the return address

Calling Convention

● The calling convention (or stack discipline) guarantees that on
function exit sp is the same as it was on entry
○ So, no need to save sp explicitly
○ Our simple AR maintains stack discipline (why?)

● We do need the return address
● Also, it’s handy to have a pointer to the start of the current

activation

Calling Convention

● The calling convention (or stack discipline) guarantees that on
function exit sp is the same as it was on entry
○ So, no need to save sp explicitly
○ Our simple AR maintains stack discipline (why?)

● We do need the return address
● Also, it’s handy to have a pointer to the start of the current

activation
○ This pointer lives in register fp (“frame pointer”)

Calling Convention

● The calling convention (or stack discipline) guarantees that on
function exit sp is the same as it was on entry
○ So, no need to save sp explicitly
○ Our simple AR maintains stack discipline (why?)

● We do need the return address
● Also, it’s handy to have a pointer to the start of the current

activation
○ This pointer lives in register fp (“frame pointer”)
○ Reason for frame pointer will be clear shortly

The Activation Record (for our little language)

● Summary: for this language, an AR with
1. the caller’s frame pointer
2. the actual parameters, and
3. the return address

suffices.

The Activation Record (for our little language)

● Summary: for this language, an AR with
1. the caller’s frame pointer
2. the actual parameters, and
3. the return address

suffices.

The Activation Record (for our little language)

● Summary: for this language, an AR with
1. the caller’s frame pointer
2. the actual parameters, and
3. the return address

suffices.

The Activation Record (for our little language)

● Summary: for this language, an AR with
1. the caller’s frame pointer
2. the actual parameters, and
3. the return address

suffices.

The Activation Record (for our little language)

● Summary: for this language, an AR with
1. the caller’s frame pointer
2. the actual parameters, and
3. the return address

suffices.
● Visual learners: consider a call to f(x,y). The AR will be:

The Activation Record (for our little language)

● Summary: for this language, an AR with
1. the caller’s frame pointer
2. the actual parameters, and
3. the return address

suffices.
● Visual learners: consider a call to f(x,y). The AR will be:

Code Generation: Function Calls

Code Generation: Function Calls

● The calling sequence is the instructions (of both caller and callee) to
set up a function invocation

Code Generation: Function Calls

● The calling sequence is the instructions (of both caller and callee) to
set up a function invocation

● Requires one new instruction: call label

Code Generation: Function Calls

● The calling sequence is the instructions (of both caller and callee) to
set up a function invocation

● Requires one new instruction: call label
○ Jump to label, save address of next instruction in the

special-purpose register ra
■ On other architectures (like x86!) the return address is

stored on the stack by the “call” instruction
■ (This is also called “branch and link”.)

Code Generation: Function Calls

cgen(f(e
1

,...,e
n
)) =

Code Generation: Function Calls

cgen(f(e
1

,...,e
n
)) =

push fp
● The caller saves its value of the frame

pointer

Code Generation: Function Calls

cgen(f(e
1

,...,e
n
)) =

push fp
cgen(e

1
)

push r1

● The caller saves its value of the frame
pointer

● Then it saves the actual arguments in order

Code Generation: Function Calls

cgen(f(e
1

,...,e
n
)) =

push fp
cgen(e

1
)

push r1
...

● The caller saves its value of the frame
pointer

● Then it saves the actual arguments in order

Code Generation: Function Calls

cgen(f(e
1

,...,e
n
)) =

push fp
cgen(e

1
)

push r1
...
cgen(e

n
)

push r1

● The caller saves its value of the frame
pointer

● Then it saves the actual arguments in order

Code Generation: Function Calls

cgen(f(e
1

,...,e
n
)) =

push fp
cgen(e

1
)

push r1
...
cgen(e

n
)

push r1
call f_entry

● The caller saves its value of the frame
pointer

● Then it saves the actual arguments in order
● The caller saves the return address in

register ra (via the call instruction)
● The AR so far is n+1 bytes long

Code Generation: Function Calls

cgen(f(e
1

,...,e
n
)) =

push fp
cgen(e

1
)

push r1
...
cgen(e

n
)

push r1
call f_entry
pop fp

● The caller saves its value of the frame
pointer

● Then it saves the actual arguments in order
● The caller saves the return address in

register ra (via the call instruction)
● The AR so far is n+1 bytes long
● Caller restores fp

Code Generation: Function Definition

cgen(def f(x
1

,...,x
n
) = e) =

Code Generation: Function Definition

cgen(def f(x
1

,...,x
n
) = e) =

 f_entry:

Code Generation: Function Definition

cgen(def f(x
1

,...,x
n
) = e) =

 f_entry:
mov fp<-sp

Code Generation: Function Definition

cgen(def f(x
1

,...,x
n
) = e) =

 f_entry:
mov fp<-sp
push ra

Code Generation: Function Definition

cgen(def f(x
1

,...,x
n
) = e) =

 f_entry:
mov fp<-sp
push ra
cgen(e)

Code Generation: Function Definition

cgen(def f(x
1

,...,x
n
) = e) =

 f_entry:
mov fp<-sp
push ra
cgen(e)
ra <- top

Code Generation: Function Definition

cgen(def f(x
1

,...,x
n
) = e) =

 f_entry:
mov fp<-sp
push ra
cgen(e)
ra <- top
add sp <- sp z

Code Generation: Function Definition

cgen(def f(x
1

,...,x
n
) = e) =

 f_entry:
mov fp<-sp
push ra
cgen(e)
ra <- top
add sp <- sp z
return

● New instruction: return
○ Jump to address in register ra

Code Generation: Function Definition

cgen(def f(x
1

,...,x
n
) = e) =

 f_entry:
mov fp<-sp
push ra
cgen(e)
ra <- top
add sp <- sp z
return

● New instruction: return
○ Jump to address in register ra

● Note: the frame pointer points to the
top, not bottom of the frame

Code Generation: Function Definition

cgen(def f(x
1

,...,x
n
) = e) =

 f_entry:
mov fp<-sp
push ra
cgen(e)
ra <- top
add sp <- sp z
return

● New instruction: return
○ Jump to address in register ra

● Note: the frame pointer points to the
top, not bottom of the frame

● The callee pops the return address,
the actual arguments and the saved
value of the frame pointer

Code Generation: Function Definition

cgen(def f(x
1

,...,x
n
) = e) =

 f_entry:
mov fp<-sp
push ra
cgen(e)
ra <- top
add sp <- sp z
return

● New instruction: return
○ Jump to address in register ra

● Note: the frame pointer points to the
top, not bottom of the frame

● The callee pops the return address,
the actual arguments and the saved
value of the frame pointer

● z = n + 2 (so far)

Calling Sequence for f(x, y)

Calling Sequence for f(x, y)

Calling Sequence for f(x, y)

Calling Sequence for f(x, y)

Calling Sequence for f(x, y)

Code Generation: Variables

● Variable references are the last construct

Code Generation: Variables

● Variable references are the last construct
● The “variables” of a function are just its parameters

Code Generation: Variables

● Variable references are the last construct
● The “variables” of a function are just its parameters

○ They are all in the AR

Code Generation: Variables

● Variable references are the last construct
● The “variables” of a function are just its parameters

○ They are all in the AR
○ Pushed by the caller

Code Generation: Variables

● Variable references are the last construct
● The “variables” of a function are just its parameters

○ They are all in the AR
○ Pushed by the caller

● Problem: because the stack grows when intermediate results are
saved, the variables are not at a fixed offset from sp

Code Generation: Variables

● Variable references are the last construct
● The “variables” of a function are just its parameters

○ They are all in the AR
○ Pushed by the caller

● Problem: because the stack grows when intermediate results are
saved, the variables are not at a fixed offset from sp
○ Challenge question: what are they at a fixed offset from?

Code Generation: Variables

● Variable references are the last construct
● The “variables” of a function are just its parameters

○ They are all in the AR
○ Pushed by the caller

● Problem: because the stack grows when intermediate results are
saved, the variables are not at a fixed offset from sp
○ Challenge question: what are they at a fixed offset from?
○ Answer: the frame pointer

Code Generation: Variables

● Variable references are the last construct
● The “variables” of a function are just its parameters

○ They are all in the AR
○ Pushed by the caller

● Problem: because the stack grows when intermediate results are
saved, the variables are not at a fixed offset from sp
○ Challenge question: what are they at a fixed offset from?
○ Answer: the frame pointer

■ Always points to the return address on the stack
● = the value of sp on function entry

Code Generation: Variables

● Variable references are the last construct
● The “variables” of a function are just its parameters

○ They are all in the AR
○ Pushed by the caller

● Problem: because the stack grows when intermediate results are
saved, the variables are not at a fixed offset from sp
○ Challenge question: what are they at a fixed offset from?
○ Answer: the frame pointer

■ Always points to the return address on the stack
● = the value of sp on function entry

■ It doesn’t move => args on the stack are at a fixed offset

Code Generation: Variables

● Example: For a function def f(x
1

, x
2

) = e the activation and frame
pointer are set up as follows:

Code Generation: Variables

● Example: For a function def f(x
1

, x
2

) = e the activation and frame
pointer are set up as follows:

Code Generation: Variables

● Example: For a function def f(x
1

, x
2

) = e the activation and frame
pointer are set up as follows:

● x
1

 (first parameter) is at fp + 2

Code Generation: Variables

● Example: For a function def f(x
1

, x
2

) = e the activation and frame
pointer are set up as follows:

● x
1

 (first parameter) is at fp + 2
● x

2
 (second parameter) is at fp + 1

Code Generation: Variables

● Example: For a function def f(x
1

, x
2

) = e the activation and frame
pointer are set up as follows:

● x
1

 (first parameter) is at fp + 2
● x

2
 (second parameter) is at fp + 1

● Thus:

cgen(x
i
) =

ld r1 <- fp[z]

Code Generation: Variables

● Example: For a function def f(x
1

, x
2

) = e the activation and frame
pointer are set up as follows:

● x
1

 (first parameter) is at fp + 2
● x

2
 (second parameter) is at fp + 1

● Thus:

cgen(x
i
) =

ld r1 <- fp[z]

● where z ≈ n+1 - i

Summary

Summary

● The activation record must be designed together with the code
generator

Summary

● The activation record must be designed together with the code
generator

● Code generation can be done by recursive traversal of the AST

Summary

● The activation record must be designed together with the code
generator

● Code generation can be done by recursive traversal of the AST
● As you write your compiler, we recommend starting with a stack

machine (simpler!)

Summary

● The activation record must be designed together with the code
generator

● Code generation can be done by recursive traversal of the AST
● As you write your compiler, we recommend starting with a stack

machine (simpler!)
○ ./cool –asm generates Cool-ASM stack machine code for

Cool
■ use this to help you with PA3!

Summary

● The activation record must be designed together with the code
generator

● Code generation can be done by recursive traversal of the AST
● As you write your compiler, we recommend starting with a stack

machine (simpler!)
○ ./cool –asm generates Cool-ASM stack machine code for

Cool
■ use this to help you with PA3!

● Production compilers do different things:

Summary

● The activation record must be designed together with the code
generator

● Code generation can be done by recursive traversal of the AST
● As you write your compiler, we recommend starting with a stack

machine (simpler!)
○ ./cool –asm generates Cool-ASM stack machine code for

Cool
■ use this to help you with PA3!

● Production compilers do different things:
○ keep as many values as possible in registers, etc

Summary

● The activation record must be designed together with the code
generator

● Code generation can be done by recursive traversal of the AST
● As you write your compiler, we recommend starting with a stack

machine (simpler!)
○ ./cool –asm generates Cool-ASM stack machine code for

Cool
■ use this to help you with PA3!

● Production compilers do different things:
○ keep as many values as possible in registers, etc
○ save this stuff for PA4

After Break

● We will continue our discussion of this stack machine language
by discussing the “hard” features of Cool
○ object layout for OOP
○ dynamic dispatch

After Break

● We will continue our discussion of this stack machine language
by discussing the “hard” features of Cool
○ object layout for OOP
○ dynamic dispatch

● You should start PA3c3 over break
○ I assure you that you will regret it if you do not

After Break

● We will continue our discussion of this stack machine language
by discussing the “hard” features of Cool
○ object layout for OOP
○ dynamic dispatch

● You should start PA3c3 over break
○ I assure you that you will regret it if you do not

● Don’t forget about the midterm on 3/26
○ I will hold a review session on 3/24 or 3/25 in the evening,

keep an eye on Discord for a poll

