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Course Announcements

● PA3c2 (TAC) is due later this week (“before spring break”)
○ you should already have started, or you are behind
○ if there is demand from the class, I will consider a short 

extension on this assignment to e.g., Monday
● I have become aware of a bug in the reference compiler’s x86-64 

module; a fix is forthcoming. For now, don’t trust it.
● Don’t forget there is a midterm in this class the week after spring 

break!
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Agenda

● In this lecture (and, unfortunately, the one on the Monday after 
spring break…) I am going to show you how to do code generation 
for a stack machine (“Cool ASM”/”Cool bytecode”)
○ Including all of the complexity of handling objects, etc.

● A stack machine is simpler than the x86-64 we saw on Monday
○ This is on purpose (where’s the fun if I make it too easy…)

● Hard PA3 task for you: merge…
○ …what you know about x86-64 (i.e., last lecture)
○ …with what you know about code generation for a simpler 

target (this lecture)
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Agenda (for real): two lectures on…

● Stack machine basics
○ accumulator, stack pointer

● Stack discipline, calling convention for our stack machine
○ with a bit of optimization thrown in to give you a taste of the 

idea
● Object layout

○ and its interactions with subtyping
● Dispatch tables/vtables

○ this gets us to dynamic dispatch

Q: What’s on the midterm?
A: Only what we get 
through today. I probably 
won’t ask much about it.
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○ No variables or registers

● A stack of values for intermediate results
○ Imagine a calculator that uses “reverse Polish” notation

● Think of it this way:
○ I am going to explain how you’d build “Cool javac”; your 

compiler is supposed to be “Cool g++”.
■ “Cool javac” : Cool -> stack machine bytecode

● A “JVM” is also necessary to interpret the bytecode!
■ “Cool g++” : Cool -> x86-64
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Stack Machines: Example Program

● Consider two instructions:
○ push i

■ place the integer i on top of the stack 
○ add 

■ pop two elements, add them and put the result back on 
the stack

● A program to compute 7 + 5:
push 7 
push 5 
add

Quick poll: how much 
does this have in common 
with the 280 project?
(determines how fast I go)
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Stack Machines: Example Program

● Each instruction:
○ Takes its operands from the top of the stack 
○ Removes those operands from the stack 
○ Computes the required operation on them 
○ Pushes the result on the stack

…stack

push 7

…

7

push 5

…

7

5

…

12

add

+
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● Stack machines have a very nice property from our perspective 
as compiler writers:

○ Each operation takes operands from the same place and 
puts results in the same place

● This means a uniform compilation scheme
○ We don’t have to worry about where operands are (“they’re 

on the stack”)
● And therefore means we can write a very simple compiler

○ Many/most compilers start by targeting a stack machine
○ A good idea for you, too! (in PA3)



Stack Machines: Advantages



Stack Machines: Advantages

● Location of the operands is implicit
○ Always on the top of the stack



Stack Machines: Advantages

● Location of the operands is implicit
○ Always on the top of the stack

● No need to specify operands explicitly



Stack Machines: Advantages

● Location of the operands is implicit
○ Always on the top of the stack

● No need to specify operands explicitly
● No need to specify the location of the result



Stack Machines: Advantages

● Location of the operands is implicit
○ Always on the top of the stack

● No need to specify operands explicitly
● No need to specify the location of the result
● Instruction “add” as opposed to “add r1, r2”  

○ Smaller encoding of instructions
○ More compact programs (great for network!)



Stack Machines: Advantages

● Location of the operands is implicit
○ Always on the top of the stack

● No need to specify operands explicitly
● No need to specify the location of the result
● Instruction “add” as opposed to “add r1, r2”  

○ Smaller encoding of instructions
○ More compact programs (great for network!)

● This is one reason why Java bytecode uses a stack evaluation 
model
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Stack Machines: A Big Disadvantage

● The add instruction does 3 memory operations
○ Two reads and one write to the stack

■ This is very slow! 
○ The top of the stack is “frequently” accessed (so much)

cache access

clock cycles?

● We can do one simple optimization to 
mitigate this disadvantage
○ Bonus pedagogical benefit: I can 

mention again that you shouldn’t 
prematurely optimize on PA3

● Can anyone guess what it is? 
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Stack Machines: Accumulator Register

● Key insight: keep the top of the stack in a register (called the 
accumulator)
○ This should remind you of how fold works

■ It’s almost like functional programming is relevant to the rest of the class…

○ Register accesses are much faster
● The add instruction is now  acc <- acc + top_of_stack

○ Only one memory operation, much faster!
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Stack Machines: Accumulator Invariants

● The result of computing an expression is always in the 
accumulator

● For an operation op(e1,...,en), push the accumulator on the 
stack after computing each of e1, ..., en-1
○ en's result is in the accumulator before op
○ After the operation pop n-1 values

● After computing an expression the stack is as before

Let’s look at an example…
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Stack Machines: Accumulator Example

● Computing  7 + 5  with an accumulator:

…stack

acc

acc <- 7
push acc

…

7

7

acc <- 5

…

7

5

acc <- acc + top_of_stack
pop

…

12

+
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acc <- 3
push acc
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push acc
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acc <- acc + top_of_stack
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3
3
7
7
5
12
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Stack Machines: Bigger Example: 3 + (7 + 5)

Code
acc <- 3
push acc
acc <- 7
push acc
acc <- 5
acc <- acc + top_of_stack
pop
acc <- acc + top_of_stack
pop

Acc
3
3
7
7
5
12
12
15
15

Stack
<init>
3, <init>
3, <init>
7, 3, <init>
7, 3, <init>
7, 3, <init>
3, <init>
3, <init>
<init>
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Stack Machines: Accumulator Invariants

● The result of computing an expression is always in the 
accumulator

● For an operation op(e1,...,en), push the accumulator on the 
stack after computing each of e1, ..., en-1
○ en's result is in the accumulator before op
○ After the operation pop n-1 values

● After computing an expression the stack is as before
○ It is CRITICAL that the stack is preserved across the evaluation 

of a subexpression
■ Stack before evaluating  7 + 5  is  3,<init>
■ Stack after evaluating  7 + 5  is also  3,<init>
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From Stack Machines to RISC

● The “compiler” we will outline in this two-lecture series will 
generate code for a stack machine with an accumulator
○ You might want to run the resulting code on a processor

● To do so, we'll implement stack machine instructions using 
Cool-ASM instructions and registers
○ Cool-ASM is a bytecode format described in the CRM

■ I will assume access to a Cool-ASM interpreter
○ Fun PA3 activity for you: map this Cool-ASM to x86-64

■ effectively, this would be using Cool-ASM as an IR!
■ you are welcome to do so in your compiler if you want

● would it come before or after three-address code?
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Cool-ASM in Brief
● Cool-ASM is a RISC-style assembly language

○ An assembly language is an untyped, unsafe, low-level, fast 
programming language with few-to-no primitives.

● A register is a fast-access untyped global variable shared by the entire 
assembly program.
○ Cool-ASM: 8 general registers and 3 special ones (stack pointer, 

frame pointer, return address)
● An instruction is a primitive statement in assembly language that 

operates on registers
○ Cool-ASM: add, jmp, ld, push, …

● A load-store architecture: bring values in to registers from memory to 
operate on them.



Cool-ASM in Brief: Sample Instructions

add r2 <- r5 r2 
li r5 <- 183
ld r2 <- r1[5] 
st r1[6] <- r7 
my_label: 
push r1
sub r1 <- r1 1 
bnz r1 my_label

; r2 = r5 + r2
; r5 = 183
; r2 = *(r1+5)
; *(r1+6) = r7
-- dashdash also a comment 
; *sp = r1; sp --;
; r1 -- ;
; if (r1 != 0) goto my_label



Cool-ASM in Brief: Sample Instructions

add r2 <- r5 r2 
li r5 <- 183
ld r2 <- r1[5] 
st r1[6] <- r7 
my_label: 
push r1
sub r1 <- r1 1 
bnz r1 my_label

; r2 = r5 + r2
; r5 = 183
; r2 = *(r1+5)
; *(r1+6) = r7
-- dashdash also a comment 
; *sp = r1; sp --;
; r1 -- ;
; if (r1 != 0) goto my_label

Details of Cool-ASM don’t 
matter much; you’re not 
required to implement this. See 
the CRM if you want full details.
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Simulating a Stack Machine….

● The accumulator is kept in register r1
○ This is just a convention. You could pick r2.

● The stack is kept in memory
● The stack grows towards lower addresses

○ Standard architecture convention (MIPS)
● The address of the next unused location on the stack is kept in 

register sp
○ The top of the stack is always at address sp + 1

● Cool-ASM “Word Size” = 1 = number of memory cells taken up by 
one integer/pointer/string
○ Note intentional simplification vs x86! This is what makes a 

good IR



Trivia Break: Computer Science

This US Navy Rear Admiral is credited with inventing one of the first 
compilers for a computer programming language, as well as 
popularizing machine-independent languages (particularly COBOL). 
The term “debugging” was also popularized when a logbook that is 
sometimes erroneously credited to this 

person (who was one of the associated 

project’s leaders) physically recorded a 

moth that had gotten into the relays:
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Cool Assembly Example

acc <- 7 li r1 7
push acc sw sp[0] <- r1

sub sp <- sp 1
acc <- 5 li r1 5
acc <- acc + top_of_stack lw r2 <- sp[1]

add r1 <- r1 r2
pop add sp <- sp 1

Stack-machine code for  7 + 5: Equivalent Cool-ASM:

We now generalize this to a 
simple language…
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Stack Instructions

● We have these Cool-ASM instructions:

push rX st sp[0] <- rX
sub sp <- sp 1

pop rX ld rX <- sp[1]
add sp <- sp 1

rX <- top ld rX <- sp[1]
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A Small Language

● We will consider a source language with integers and integer 
operations (only, for now)

● Full grammar:

P -> D ; P | D
D -> def id(ARGS) = E
ARGS -> id, ARGS | id
E -> int | id | if E

1
 = E

2
 then E

3
 else E

4
| E

1
 + E

2
 | E

1
 - E

2
 | id(E

1
, …, E

n
)

Reminder of how to read this:
● capital letters are 

non-terminals
● italics = lexemes
● “|” separates options
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A Small Language (continued)

● The first function definition f is the “main” routine
● Running the program on input i means computing f(i)
● Program for computing the Fibonacci numbers:

def fib(x) = 
if x = 1 then

0 
else 

if x = 2 then 
1 

else 
fib(x - 1) + fib(x – 2)
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Code Generation Strategy

● For each expression e we generate Cool- ASM code that:
○ Computes the value of e in r1 (our accumulator) 
○ Preserves sp and the contents of the stack

● We define a code generation function cgen(e) whose result is the 
code generated for e

● Like type rules, our code generation function is syntax-directed
○ in other words, it is a big case statement, based on the 

structure of the input
■ we will have one code generation rule for constants, one 

for addition, one for subtraction, etc. 
● one for each kind of expression!
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Code Generation: Constants

● The code to evaluate a constant simply copies it into the 
accumulator:

cgen(123)  =  li r1 123
● Note that this also preserves the stack, as required
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cgen(e
1

 + e
2

)  =
cgen(e

1
)  

push r1
cgen(e

2
)  ;; e2 now in r1

pop t1
add r1 <- t1 r1

● Possible optimization: put the result of e
1

 directly in register t1?
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● Unsafe optimization: put the result of e
1

 directly in register t1?
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cgen(e
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Code Generation Mistake: Addition Alternative

● Unsafe optimization: put the result of e
1

 directly in register t1?

cgen(e
1

 + e
2

)  =
cgen(e

1
)  

mov t1 <- r1
cgen(e

2
)  ;; e2 now in r1

add r1 <- t1 r1

● To see why this is incorrect, try to generate code for : 3 + (7 + 5)
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Code Generation Notes

● The code that we generated for addition is a template with “holes” 
for code for evaluating e

1
 and e

2
● Stack-machine code generation is recursive

○ Code for e
1

 + e
2

 consists of code for e
1

 and e
2

 glued together
■ with a bit of code to actually do the addition

● Implication: code generation can be written as a recursive-descent 
tree walk of the AST
○ At least for expressions
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Code Generation: Subtraction

cgen(e
1

 - e
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)  =
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1
)  

push r1
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pop t1
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Code Generation: Subtraction

cgen(e
1

 - e
2

)  =
cgen(e

1
)  

push r1
cgen(e

2
)  ;; e2 now in r1

pop t1
sub r1 <- t1 r1

● Almost identical to addition!
○ only difference is the sub instruction, which does what you’d 

expect (subtraction)
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Code Generation: If

● To generate code for if, we need control flow instructions
● Cool-ASM has two that will be useful:

beq r1 r2 label
conditional branch to label if r1 = r2

jmp label
unconditional jump to label Note the similarity to what x86 

provides! How easy would it be 
to convert these Cool-ASM 
instructions into x86?
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Code Generation: If

cgen(if e1 = e2 then e3 else e4) =
cgen(e1)
push r1 
cgen(e2)
pop t1
beq r1 t1 true_branch ;; else fall through 
cgen(e4)
jmp end_if 

    true_branch:
cgen(e3) 

    end_if:



Trivia Break: Art History

This style of visual arts, architecture, and product 
design first appeared in Paris in the early 1910s and 
flourished in the US and Europe during the 1920s. It is 
characterized by rare and expensive materials, such as 
ebony and ivory, exquisite craftsmanship, and the 
inclusion of “modern” materials like chrome plating, 
stainless steel, and plastic. In New York City, the 
Empire State Building, Chrysler Building, and other 
buildings from the 1920s and 1930s are monuments to 
the style.



Trivia Break: Geography

This lake in Russia is the world’s seventh-largest by surface area (it is 
just larger than Belgium). However, unlike most other freshwater 
lakes in the world, it is a rift lake: a geologically active rift in the 
Earth’s crust at the bottom of the lake is being pulled apart at a rate 
of about 4mm per year. This has two important implications for this 
lake: it is both the oldest (~25-30 million years old) and deepest (avg. 
744m, deepest 1,642m) lake in the world. Because of its depth, it 
contains about 22% of the world’s freshwater.
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Activation Records

● Recall that an activation record (or stack frame) stores calling 
context information on the stack during a function call.
○ Code for function calls/definitions depends on the layout of the 

activation record
● A very simple AR suffices for this language:

○ The result is always in the accumulator
■ Thus, no need to store the result in the AR

○ The activation record holds actual parameters
■ For f(x

1
,...,x

n
), push x

1
,...,x

n
 on the stack

■ These are the only variables in this language
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Calling Convention

● The calling convention (or stack discipline) guarantees that on 
function exit sp is the same as it was on entry
○ So, no need to save sp explicitly
○ Our simple AR maintains stack discipline (why?)

● We do need the return address
● Also, it’s handy to have a pointer to the start of the current 

activation
○ This pointer lives in register fp (“frame pointer”)
○ Reason for frame pointer will be clear shortly
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Code Generation: Function Calls

● The calling sequence is the instructions (of both caller and callee) to 
set up a function invocation

● Requires one new instruction: call label
○ Jump to label, save address of next instruction in the 

special-purpose register ra
■ On other architectures (like x86!) the return address is 

stored on the stack by the “call” instruction
■ (This is also called “branch and link”.)
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Code Generation: Function Calls

cgen(f(e
1

,...,e
n
)) =

push fp 
cgen(e

1
)

push r1 
... 
cgen(e

n
)

push r1 
call f_entry 
pop fp

● The caller saves its value of the frame 
pointer

● Then it saves the actual arguments in order
● The caller saves the return address in 

register ra (via the call instruction)
● The AR so far is n+1 bytes long
● Caller restores fp
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Code Generation: Function Definition

cgen(def f(x
1

,...,x
n
) = e) =

    f_entry: 
mov fp<-sp 
push ra 
cgen(e)
ra <- top
add sp <- sp z 
return

● New instruction: return
○ Jump to address in register ra

● Note: the frame pointer points to the 
top, not bottom of the frame

● The callee pops the return address, 
the actual arguments and the saved 
value of the frame pointer

● z = n + 2 (so far)
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Code Generation: Variables

● Variable references are the last construct
● The “variables” of a function are just its parameters

○ They are all in the AR 
○ Pushed by the caller

● Problem: because the stack grows when intermediate results are 
saved, the variables are not at a fixed offset from sp
○ Challenge question: what are they at a fixed offset from?
○ Answer: the frame pointer

■ Always points to the return address on the stack
● = the value of sp on function entry

■ It doesn’t move => args on the stack are at a fixed offset
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Code Generation: Variables

● Example: For a function def f(x
1

, x
2

) = e the activation and frame 
pointer are set up as follows:

● x
1

 (first parameter) is at fp + 2
● x

2
 (second parameter) is at fp + 1

● Thus:

cgen(x
i
) = 

ld r1 <- fp[z] 

● where  z ≈ n+1 - i 
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Summary

● The activation record must be designed together with the code 
generator

● Code generation can be done by recursive traversal of the AST
● As you write your compiler, we recommend starting with a stack 

machine (simpler!)
○ ./cool –asm generates Cool-ASM stack machine code for 

Cool
■ use this to help you with PA3!

● Production compilers do different things:
○ keep as many values as possible in registers, etc
○ save this stuff for PA4
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After Break

● We will continue our discussion of this stack machine language 
by discussing the “hard” features of Cool
○ object layout for OOP
○ dynamic dispatch

● You should start PA3c3 over break
○ I assure you that you will regret it if you do not

● Don’t forget about the midterm on 3/26
○ I will hold a review session on 3/24 or 3/25 in the evening, 

keep an eye on Discord for a poll


