
Compiler Backend
Martin Kellogg



Course Announcements

● PA3 deadline is today (AoE)
○ How is it going?



Course Announcements

● PA3 deadline is today (AoE)
○ How is it going?

● I will hold an extra office hour today 11:30-12:30 for those who 
would like to see a PA3 test case
○ You may also be able to catch me either between 2 and 2:30 in 

my office or at the CS seminar this afternoon, but no promises



Course Announcements

● PA3 deadline is today (AoE)
○ How is it going?

● I will hold an extra office hour today 11:30-12:30 for those who 
would like to see a PA3 test case
○ You may also be able to catch me either between 2 and 2:30 in 

my office or at the CS seminar this afternoon, but no promises
● PA4 is still Coming Soon™ (I’m actually trying to get this 

autograder right the first time…)



Course Announcements

● PA3 deadline is today (AoE)
○ How is it going?

● I will hold an extra office hour today 11:30-12:30 for those who 
would like to see a PA3 test case
○ You may also be able to catch me either between 2 and 2:30 in 

my office or at the CS seminar this afternoon, but no promises
● PA4 is still Coming Soon™ (I’m actually trying to get this 

autograder right the first time…)
● Note that PA4c1’s specification is TAC -> TAC

○ that is, the input is also a .cl-tac file
○ PA4c1 is due April 28, and is mostly optional
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● Dividing the program up into procedures give one big benefit: 

separate compilation
○ we can also optimize each procedure independently using 

global analyses like those we’ve discussed today
● However, procedure calls also introduce significant overhead

○ pre-call/post-return bookkeeping, prologue/epilogue, jump
● Calls are also hard to reason about in global optimizations

○ compiler doesn’t know what will happen inside the call
● These downsides of procedure calls motivate interprocedural (or 

“whole-program”) optimizations that span procedure boundaries

Today we will take a brief look at 
two interprocedural optimizations:
● inlining
● tail call optimization
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Interprocedural Optimizations: Inlining
● Consider the following procedure:

int add(int x, int y):
return x + y

● Imagine generating code for a call to this procedure:
○ the actual procedure body is only one instruction
○ the prologue and epilogue dominate, we may have to spill 

registers at call sites, etc.
● Key idea of inlining: for such a procedure call, replace the call with 

the procedure’s body
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Inlining: Benefits & Risks
● Inlining is useful when:

○ the body of the procedure to be inlined is much shorter than 
the prologue/epilogue

○ inlining enables specialization (e.g., arguments are constants)
○ inlining enables other optimizations (e.g., part of the body is 

dead at this particular call site)
● Inlining also has risks:

○ increases code size (may overflow instruction cache)
○ increases register pressure

Note similar benefits and risks to 
loop unrolling. Deciding whether 
to inline is similarly complicated!
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Inlining: Common Heuristics
● In practice, production compilers will use heuristics to decide 

when/if to inline, such as:
○ Is this procedure a leaf in the call graph?

■ That is, does it not call any other procedures itself?
○ Is the callee procedure significantly smaller than the calling 

procedure?
○ Static call count: the number of distinct sites that call the 

procedure. 
■ Any procedure called just once is a good inlining candidate.

○ Profile data, such as fraction of execution time (if available)
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Interprocedural Optimizations: Tail Calls
● Consider a procedure that calls another procedure and then 

immediately returns, like this example:

int foo(...):
...
return bar(...)

● What will happen as bar returns?
○ We will execute the epilogues of foo and bar in sequence, with 

no intervening instructions
■ Including many redundant operations (e.g., resetting %rsp)
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Interprocedural Optimizations: Tail Calls
● Tail-call elimination is an interprocedural optimization that allows a 

function called as the last instruction in a procedure to return to the 
calling procedure’s caller directly
○ This eliminates redundant operations in the epilogue

● This optimization is most important for tail-recursive procedures 
that call themselves as the last operation in their body
○ e.g., imagine a naive Fibonacci implementation
○ Tail-call elimination often reduces asymptotic stack space 

requirements from linear to constant for tail-recursive calls
● Functional languages practically require tail-call elimination
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Interprocedural Optimizations: Issues
● The biggest difficulty in interprocedural optimization is 

maintaining support for separate compilation
○ Traditional “compilation unit” is a procedure or file

● If all of the code is definitely available, it suffices to track 
dependencies between procedures from an optimization 
perspective, and then re-optimize whenever a dependent 
procedure changes

● Alternatively, we can defer interprocedural optimization until link 
time, when a linker combines the object files from each compilation 
unit into a single executable. We’ll talk more about this next week.
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Lexer Parser Typechecker
Code 

Generator

source
code

optimized 
assembly

Interpreter

PA2 PA3

PA4: Optimizer

unoptimized IR 
from codegen

Local, regional, 
and global 

optimization optimized 
IR 

“Backend”:
● instruction 

selection
● instruction 

scheduling
● register 

allocation
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Compiler Backend Overview

● The backend of an optimizing compiler converts from optimized 
IR into optimized assembly for the target machine

● Three major subproblems:
○ Instruction selection: map IR into assembly code, combine 

low-level IR operations into machine instructions (take 
advantage of addressing modes, etc.)

○ Instruction scheduling: Reorder instructions to minimize 
execution time, hide latencies from processor function units, 
memory/cache stalls

○ Register allocation: Map abstract registers to actual registers, 
add code to spill values to memory and reload as needed, etc

Today we will briefly cover 
instruction selection + scheduling, 
and then start on register 
allocation. Wednesday, we’ll cover 
register allocation in more detail.
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Instruction Selection: Overview

● Goal: map IR to assembly code
○ assuming known storage layout and code shape

● Problem to solve: given the low-level IR, there are many possible 
code sequences that implement it correctly
○ e.g., how many ways can we “set %rax to zero” in x86-64?

movq  $0, %rax salq 64, %rax
subq %rax, %rax shrq 64, %rax
xorq %rax, %rax imulq $0, %rax

● Many machine instructions also do several things at once (e.g., 
register arithmetic and effective address calculation in a movq)
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Instruction Selection: Criteria

● Several possibilities: fastest, smallest, minimize power 
consumption (e.g., don’t use a functional unit if leaving it 
powered-down is a win), reduce memory traffic, etc.
○ Typically we want “fastest”, but depends on opt. target

● Sometimes not obvious
○ e.g., if one of the function units in the processor is idle and we 

can select an instruction that uses that unit, it effectively 
executes for free, even if that instruction wouldn’t be chosen 
normally
■ (Some interaction with scheduling here...)
■ (and it might consume extra power, so bad if that matters)
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● One algorithm for instruction selection is tree pattern matching
● Goal: find a sequence of machine instructions that perform the 

computation described by the program’s IR code
● Algorithm:

○ Describe each machine instruction we want to consider using 
same low-level IR used for program

○ Tile the low-level IR tree with operation (instruction) trees
■ A tiling “implements” a tree if it covers every node in the 

tree and the overlap between any two tiles (trees) is 
limited to a single compatible node
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Instruction Selection: Tiling Generation

● Two common algorithms to generate tilings:
○ Maximal munch:

■ Top-down tree walk
■ Find largest tile that fits each node

● Why largest? Heuristic: One instruction that “does 
more” is likely cheaper than several that do less

○ Dynamic programming:
■ Assign costs to each node in the tree using a cost model

● cost = cost of individual node + subtree costs
■ Try all possible combinations bottom-up, pick cheapest
■ Slower, but optimal for a given cost model
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Instruction Selection: Generating Code

Given a tiled tree, to generate code:
● Do a postorder tree walk with node-dependant order for 

children
● Each tile corresponds to a code sequence; emit code sequences 

in order
● Connect tiles by using same register (or temporary) name to tie 

boundaries together



Instruction Selection: T.P.M. Example

Tree for  a[i] := x



Trivia Break: Computer Science

This American engineer, inventor and science administrator joined 
MIT in 1919. One of his major scientific works was a differential 
analyzer, a mechanical analog computer with some digital 
components that could solve differential equations with as many as 
18 independent variables. However, he is best-known for his work in 
scientific administration: he was vice-president and dean of MIT’s 
School of Engineering, and then became the head of the U.S. Office of 
Scientific Research and Development during the second world war. 
He was also instrumental in the founding of the National Science 
Foundation, and he founded the company that eventually became 
Raytheon while he was at MIT. 



Trivia Break: Computer Science

Vannevar Bush wrote a 1945 article about this hypothetical 
electromechanical device for interacting with microform documents. 
Bush envisioned that individuals would compress and store all of 
their books, records, and communications in this device, "mechanized 
so that it may be consulted with exceeding speed and flexibility". The 
individual was supposed to use it as an automatic personal filing 
system, making the it "an enlarged intimate supplement to his 
memory.” The concept influenced the development of early hypertext 
systems, eventually leading to the creation of the World Wide Web, 
and personal knowledge base software.
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Instruction Scheduling

● Goal: reorder instructions to minimize execution time given 
instruction and operand latencies
○ Assume fixed program code at this point

● Why?
○ Many operations have non-zero latencies
○ Modern machines can issue several operations per cycle

■ Want to take advantage of multiple function units on chip
○ Loads and stores may or may not block
○ Branch costs vary

■ Want to help out the branch predictor, if we can
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(Note that these are just 
simplified examples; a real 
machine’s behavior will be 
much more complex!)
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Instruction Scheduling: Example 

Consider two 
schedules for the 
expression 
w*2*x*y*z:

Quick in-class exercise: turn to 
someone near you and use your 
big human brain to come up 
with a better schedule.
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List Scheduling: Algorithm

● List scheduling constructs a schedule, one cycle at a time, by doing a 
(mildly modified) topological sort of a precedence graph
○ in the precedence graph:

■ nodes are operations
■ edges are dependencies: if the operation at node n2 uses 

the result of the operation at n1, then (n1, n2) is an edge
○ use priority to choose among ready (=in-degree 0) operations

■ priority = number of cycles on critical path to the end 
(usually)

● Note: may need to rename registers to avoid false dependencies 
and conflicts

Full algorithm if you want to implement it yourself:

P = precedence graph;
Cycle = 1; Ready = leaves of P; Active = empty; 
while (Ready and/or Active are not empty)
  if (Ready is not empty) 
    remove an op from Ready; 
    S(op) = Cycle;
    Active = Active È op;
  Cycle++;
  for each op in Active
    if (S(op) + delay(op) <= Cycle) 
      remove op from Active;
      for each successor s of op in P
        if (s is ready – i.e., all operands available) 
          add s to Ready
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List Scheduling: Example

cycle: 1 2 3 4 5 6 7 8 9 10
ready: a c e g b d f h
active: a c e b d g f h

# instr done
1 a LOAD 4
2 c LOAD 5
3 e LOAD 6
4 b ADD 5
5 d MULT 7
6 g LOAD 9
7 f MULT 9
8 – (stall)
9 h MULT 11
10 – (stall)



List Scheduling: Example

cycle: 1 2 3 4 5 6 7 8 9 10 11
ready: a c e g b d f h i
active: a c e b d g f h

# instr done
1 a LOAD 4
2 c LOAD 5
3 e LOAD 6
4 b ADD 5
5 d MULT 7
6 g LOAD 9
7 f MULT 9
8 – (stall)
9 h MULT 11
10 – (stall)
11 i STORE 14
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List Scheduling: Forwards vs Backwards

● Alternative: backwards list scheduling
○ Work from the root to the leaves
○ Schedules instructions from end to beginning of the block

● In practice,  production compilers typically try both and pick the 
result that minimizes costs
○ Little extra expense since the precedence graph and other 

information can be reused
○ Different directions win in different cases
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List Scheduling: Beyond Basic Blocks

● It’s possible to do regional or even global list scheduling
○ However, it’s much more complicated and gains are often small
○ e.g., if you schedule an entire EBB, you need a heuristic to 

estimate the cost of “infinite” paths around loops
■ could e.g., assume all loops execute 10 times

● Some compilers use profiling information for scheduling
○ i.e., run the code and see how many cycles different schedules 

actually take
○ downside: need to actually run the code

■ e.g., where do you get inputs?
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Register Allocation

● IR code typically assumes infinitely-many registers are available
○ but real machines only have a small number of registers :(

● Task of the register allocator: create a mapping from IR’s abstract 
registers to physical registers
○ Or, if that’s not possible, to memory locations

■ this happens when there aren’t enough physical registers
○ Insert code to move values between registers and memory if 

needed (“spill code”)
■ Typically we will re-run the instruction scheduler if we ever 

have to spill a register
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Register Allocation: PA3 Version

● Even your PA3 implementation should probably have a simple 
“register allocator” somewhere
○ my suggestion: “everything goes in memory”
○ then you can insert load code before any operation that 

requires its operands in registers without worrying about 
what’s in those registers when you do

● However, one of the first optimizations that I suggest you 
implement for PA4 is a simple register allocator
○ avoiding memory operations is extremely profitable 🤑🤑🤑
○ I recommend waiting until later in PA4 to try more complex 

schemes 
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Register Allocation: Overview

● Register allocation: correctness or optimization
○ depends on memory model

● Local register allocation
○ two approaches: top-down and bottom-up

● Regional register allocation + complications
○ liveness analysis strikes again!

● Global register allocation via reduction to graph coloring
○ including a union-find algorithm for fun



Course Announcements

● PA3 deadline is today (AoE)
○ How is it going?

● I will hold an extra office hour today 11:30-12:30 for those who 
would like to see a PA3 test case
○ You may also be able to catch me either between 2 and 2:30 in 

my office or at the CS seminar this afternoon, but no promises
● PA4 is still Coming Soon™ (I’m actually trying to get this 

autograder right the first time…)
● Note that PA4c1’s specification is TAC -> TAC

○ that is, the input is also a .cl-tac file
○ PA4c1 is due April 28, and is mostly optional


