Abstract Interpretation (2/2)

Martin Kellogg

Review: definitions

Review: definitions

An abstract interpretation formally has two components:

Review: definitions

An abstract interpretation formally has two components:
e an abstract domain over which to reason, which is composed of:

Review: definitions

An abstract interpretation formally has two components:
e an abstract domain over which to reason, which is composed of:
o asetof abstract values

Review: definitions

An abstract interpretation formally has two components:
e an abstract domain over which to reason, which is composed of:
o asetof abstract values
o anordering operation (e.g., LUB)

Review: definitions

An abstract interpretation formally has two components:
e an abstract domain over which to reason, which is composed of:
o asetof abstract values
o anordering operation (e.g., LUB)
o together these forma

Review: definitions

An abstract interpretation formally has two components:
e an abstract domain over which to reason, which is composed of:
o asetof abstract values
o anordering operation (e.g., LUB)
o together these forma
e asetof transfer functions that tell the abstract interpreter how
to reason over that abstract domain

Review: definitions

An abstract interpretation formally has two components:

e an abstract domain over which to reason, which is composed of:
o asetof abstract values
o anordering operation (e.g., LUB)
o together these forma

e asetof transfer functions that tell the abstract interpreter how

to reason over that abstract domain
o one for each kind of operation in the underlying
programming language (e.g., one for +, one for -, etc.)

Review: definitions

An abstract interpretation formally has two components:

e an abstract domain over which to reason, which is composed of:
o asetof abstract values
o anordering operation (e.g., LUB)
o together these forma

e asetof transfer functions that tell the abstract interpreter how

to reason over that abstract domain
o one for each kind of operation in the underlying
programming language (e.g., one for +, one for -, etc.)

o usually represented as tables

Concrete vs abstract domains

Concrete vs abstract domains

o the of avariable is the set of values that the
variable might actually take on during execution

Concrete vs abstract domains

o the of avariable is the set of values that the
variable might actually take on during execution

concrete
domain

Concrete vs abstract domains

e the of avariable is the set of values that the
variable might actually take on during execution
e an is a layer of indirection on top of the concrete

domain that splits it into a smaller number of sets

concrete
domain

Concrete vs abstract domains

e the of avariable is the set of values that the
variable might actually take on during execution
e an is a layer of indirection on top of the concrete

domain that splits it into a smaller number of sets

concrete
domain

abstract
domain

Concrete vs abstract domains

e the of avariable is the set of values that the
variable might actually take on during execution
e an is a layer of indirection on top of the concrete

domain that splits it into a smaller number of sets

abstract
domain
—
a

concrete
domain

Concrete vs abstract domains

e the of avariable is the set of values that the
variable might actually take on during execution
e an is a layer of indirection on top of the concrete

domain that splits it into a smaller number of sets

concrete abstract
domain (463, Y domain
\\ -
(1} {8 8 | g

|
0

Review: abstract vs concrete interpretation

concrete
1 execution
Concrete state Concrete state

)

Review: abstract vs concrete interpretation

concrete
) execution
Concrete state Concrete state

)

abstraction
function (a)

{ Abstract state]

Review: abstract vs concrete interpretation

{ Concrete state

concrete

abstraction
function (a)

{ Abstract state

~N

) execution
Concrete state

)

transfer

J

functions { Abstract state J

Review: abstract vs concrete interpretation

concrete
execution
{ Concrete state } { Concrete state]

abstraction
function (a)

T concretization

transfer function (y)

functions { Abstract state J

~N

{ Abstract state

J

Review: abstract vs concrete interpretation

concrete
execution
{ Concrete state } { Concrete state]

abstraction
function (a)

T concretization

transfer function (y)

functions { Abstractstate}

~N

{ Abstract state

soundness means that the is a subset of the

Review: clarifications

Review: clarifications

e |ast week, | went through an extended example of how to get a
parity analysis to work on one program

Review: clarifications

e last week, | went through an extended example of how to get a
parity analysis to work on one program
o however, that was just an example!
m an abstract interpretation is applicable to any program

Review: clarifications

e last week, | went through an extended example of how to get a
parity analysis to work on one program
o however, that was just an example!
m an abstract interpretation is applicable to any program
o one of the key challenges in abstract interpretation design is
figuring out the to handle precisely

Control Flow Graphs

Control Flow Graphs

Definition: a control flow graph (or CFG) is a representation, using
graph notation, of all paths that might be traversed through a program
during its execution

Control Flow Graphs

Definition: a control flow graph (or CFG) is a representation, using
graph notation, of all paths that might be traversed through a program
during its execution

e thisistheinternal representation used by most static analysis
tools

Control Flow Graphs

Definition: a control flow graph (or CFG) is a representation, using
graph notation, of all paths that might be traversed through a program
during its execution

e thisistheinternal representation used by most static analysis

tools
e nodesinthe CFG are basic blocks

Control Flow Graphs

Definition: a control flow graph (or CFG) is a representation, using
graph notation, of all paths that might be traversed through a program
during its execution

e thisistheinternal representation used by most static analysis

tools
e nodesinthe CFG are basic blocks
o abasicblock is a sequence of instructions that always execute

together

Control Flow Graphs: Example

X <- 0 ;

while x <= 6 loop
X <- X + 1

pool ;

X <= X + 2 ;

out_int(x)

Control Flow Graphs: Example

X <- 0 ; [x<—@]

while x <= 6 loop
X <- X + 1

pool ;

X <= X + 2 ;

out_int(x)

Control Flow Graphs: Example
X <- 0 , [X <- 0]

while x <= 6 loop
X <- X + 1
pool ; 0

X <= X + 2 ;
out_int(x)

Control Flow Graphs: Example

X <- 0 ;

while x <= 6 loop
X <- X + 1

pool ;

X <= X + 2 ;

out_int(x)

Control Flow Graphs: Example

X <- 0 , [X <- 0]

while x <= 6 loop

X <- X + 1
pool ; 0
true

X <= X + 2 ;
out_int(x) X <= X + 1]

Control Flow Graphs: Example

X <- 0 ;

while x <= 6 loop
X <- X + 1

pool ;

X <= X + 2 ;

out_int(x)

X s] [out_int(x);]

Control Flow Graphs: Example

X <- 0 ;

while x <= 6 loop
X <- X + 1

pool ;

X <= X + 2 ;

out_int(x)

X s] [out_int(x);]

'

X <- 0 ;

while x <= 6 loop
X <- X + 1

pool ;

X <= X + 2 ;

out_int(x)

X <ot] [out_int(x);]

'

X <- 0 ;

while x <= 6 loop
X <- X + 1

pool ;

X <= X + 2 ;

out_int(x)

X <ot] [out_int(x);]

exit

Agenda: abstract interpretation, part 2

review and clarifications from last week
soundness

refinement and branching

widening

Stein’s algorithm example

Correctness of Abstract Interpretation

Correctness of Abstract Interpretation

e |'veclaimed several times that it is possible to use abstract
interpretation to produce sound program analyses

Correctness of Abstract Interpretation

e |'veclaimed several times that it is possible to use abstract
interpretation to produce sound program analyses
o thatis, analyses without false negatives

Correctness of Abstract Interpretation

e |'veclaimed several times that it is possible to use abstract
interpretation to produce sound program analyses
o thatis, analyses without false negatives

e Thekeyideatodemonstrate that an abstract interpretation is
sound is the galois connection between a concrete value and the
concretization of its abstraction function

Correctness of Abstract Interpretation

e |'veclaimed several times that it is possible to use abstract
interpretation to produce sound program analyses
o thatis, analyses without false negatives

e Thekeyideatodemonstrate that an abstract interpretation is
sound is the galois connection between a concrete value and the
concretization of its abstraction function
o ideally, we'd like V x, y(a(x)) = x

Correctness of Abstract Interpretation

e |'veclaimed several times that it is possible to use abstract
interpretation to produce sound program analyses
o thatis, analyses without false negatives
e Thekeyideatodemonstrate that an abstract interpretation is
sound is the galois connection between a concrete value and the
concretization of its abstraction function
o ideally, we'd like V x, y(a(x)) = x
o but thisis too strong: approximation may cause us to lose
information! So, the standard formalism is:
m VXX € y(a(x))

Correctness of Abstract Interpretation

e |'veclaimed several times that it is possible to use abstract
interpretation to produce sound program analyses
o thatis, analyses without false negatives

e Thekeyideatodemonstrate that an abstract interpretation is
sound is the galois connection between a concrete value and the

concretization of its abstractio
o ideally, wed like V x, y(a(x)] And, it's also necessary to show

o but this is too strong: apprd that the Galois connection holds
information! So, the standal for the transfer functions!

m VXX € y(a(x))

Approximation!

{ Concrete state }

abstraction
function (a)

~N

Remember this
diagram from earlier?
concrete
execution
{ Concrete state]
T concretization
function
transfer (v)

{ Abstract state

Do the and

functions { Abstractstate}

paths always lead to the same concrete state?

Approximation!

What we need to show)
is that for all transfer
functions, the

is a subset of the

{ Concrete state }

abstraction
function (a)

~N

concrete \. j
execution
{ Concrete state]
T concretization
function
transfer (v)

{ Abstract state

Do the and

functions { Abstractstate}

paths always lead to the same concrete state?

More on soundness: using a Galois connection

concrete
execution
{ Concrete state } { Concrete state]

abstraction
function (a)

T concretization

transfer function (y)

functions { Abstractstate}

~N

{ Abstract state

soundness means that the is a subset of the

More on soundness: using a Galois connection

e how would we actually show that a particular abstract
interpretation is sound?

More on soundness: using a Galois connection

e how would we actually show that a particular abstract
interpretation is sound?
e here’s an algorithm for doing so:

More on soundness: using a Galois connection

e how would we actually show that a particular abstract
interpretation is sound?

e here’s an algorithm for doing so:
o for each transfer function Top for some operation op:

More on soundness: using a Galois connection

e how would we actually show that a particular abstract
interpretation is sound?
e here’s an algorithm for doing so:
o for each transfer function Top for some operation op:
m prove that for all concrete states c:

More on soundness: using a Galois connection

e how would we actually show that a particular abstract
interpretation is sound?
e here’s an algorithm for doing so:
o for each transfer function Top for some operation op:
m prove that for all concrete states c:

op(c) < (T (a(c))

More on soundness: using a Galois connection

e how would we actually show that a particular abstract
interpretation is sound?
e here’s an algorithm for doing so:
o for each transfer function Top for some operation op:
m prove that for all concrete states c:

op(c) < (T (a(c))

possible results of concrete
execution ()

More on soundness: using a Galois connection

e how would we actually show that a particular abstract
interpretation is sound?
e here’s an algorithm for doing so:
o for each transfer function Top for some operation op:
m prove that for all concrete states c:

op(c) < y(T (a(c)
\

concretization

More on soundness: using a Galois connection

e how would we actually show that a particular abstract
interpretation is sound?
e here’s an algorithm for doing so:
o for each transfer function Top for some operation op:
m prove that for all concrete states c:

op(c) < V(T (a(c))

\ concretization of the result of applying
the transfer function

More on soundness: using a Galois connection

e how would we actually show that a particular abstract
interpretation is sound?
e here’s an algorithm for doing so:
o for each transfer function Top for some operation op:
m prove that for all concrete states c:

op(c) < (T, (alc))

\ concretization of the result of applying
the transfer function to the abstraction of
the original concrete state

More on soundness: using a Galois connection

e how would we actually show that a particular abstract
interpretation is sound?
e here’s an algorithm for doing so:
o for each transfer function Top for some operation op:
m prove that for all concrete states c:

op(c) § V(T (a(c))

concretization of the result of applying
the transfer function to the abstraction of
the original concrete state ()

More on soundness: example proof

e let’s carry out an example proof using this technique ourselves on
the plus transfer function from our simple parity analysis

op(c) S y(T (a

More on soundness: example proof @

e let’s carry out an example proof using this technique ourselves on
the plus transfer function from our simple parity analysis

op(c) S y(T (a

More on soundness: example proof @

e let’s carry out an example proof using this technique ourselves on
the plus transfer function from our simple parity analysis

{even,odd }=top

/ \
{feven} {odd}
\ /

{} = bottom

op(c) S y(T (a

More on soundness: example proof @

e let’s carry out an example proof using this technique ourselves on
the plus transfer function from our simple parity analysis

+ T even odd L

{even,odd }=top
/ \ T T T T 1
{eve\n} {O/dd} even| T 'even odd _L
{} = bottom odd| T odd even _L
1 1 1 1 1

More on soundness: example proof

o |et’sfirst dispense with the easy cases:

op(c) S y(T (a

1))

op(c) S y(T (a

More on soundness: example proof @

o |et’sfirst dispense with the easy cases:
o if the transfer function entry is top, then it’s easy:

op(c) S y(T (a

More on soundness: example proof @

o |et’sfirst dispense with the easy cases:
o if the transfer function entry is top, then it’s easy:
m V cop(c) < {allintegers}istrivially true!

op(c) € y(T (o

More on soundness: example proof
o let'sfirst™ -t
o ifthet™ T even odd L . jps easy:
=V o T T T | lytrue!
even| T 'even odd L
odd| T odd even L
| L L L L1

op(c) € y(T (o

More on soundness: example proof
o let'sfirst™ -t
o ifthet™ T even odd L . jps easy:
=V o T T T | |ytrue!
even| ¥ 'even odd L
odd| ¥ odd even L
| L L L L1

op(c) S y(T (a

More on soundness: example proof @

o |et’sfirst dispense with the easy cases:
o if the transfer function entry is top, then it’s easy:
m V cop(c) < {allintegers}istrivially true!
o if the transfer function entry is bottom, it’s still pretty easy:

op(c) S y(T (a

More on soundness: example proof @

e Let’s first dispense with the easy cases:
o if the transfer function entry is top, then it’s easy:
m V cop(c) < {allintegers}istrivially true!
o if the transfer function entry is bottom, it’s still pretty easy:
m foreveryentryinour transfer function that’s bottom, one
of the inputs is also bottom

op(c) S y(T (a

More on soundness: example proof @

e Let’s first dispense with the easy cases:
o if the transfer function entry is top, then it’s easy:
m V cop(c) < {allintegers}istrivially true!
o if the transfer function entry is bottom, it’s still pretty easy:
m foreveryentryinour transfer function that’s bottom, one
of the inputs is also bottom
m op({}) is always the empty set (it can't be executed)

op(c) S y(T (a

More on soundness: example proof @

e Let’s first dispense with the easy cases:
o if the transfer function entry is top, then it’s easy:
m V cop(c) < {allintegers}istrivially true!
o if the transfer function entry is bottom, it’s still pretty easy:
m foreveryentryinour transfer function that’s bottom, one
of the inputs is also bottom
m op({}) is always the empty set (it can't be executed)

m &

More on soundness: example proof @

op(c) S y(T (a

e Let’s first dispense with the easy cases:
o if the transfer function entry is top, then it’s easy:

V c.op(c) < {all integers }is trivially true!

o if the transfer function entry is bottom, it’s still pretty easy:

for every entry in our transfer function that’s bottom, one
of the inputs is also bottom

op({}) is always the empty set (it can’t be executed)

Usy
QED

More on soundness: example proof

e let'sfirst™

o ifthe'™

O

DR B PR T P ——

even odd

op(c) S y(T (a

1))

2n it’s easy:

Vi

if the

fo even
of

or odd

U
Q

T
T T T
+ even odd
T

odd even

1 1 4L

F F FH FH]F

ly true!
), it’s still pretty easy:
tion that’s bottom, one

1't be executed)

More on soundness: example proof

e let'sfirst™

o ifthe'™

O

PR B PR B P, ——

even odd

op(c) S y(T (a

1))

2n it’s easy:

Vi

if the

fo even
of

or odd

U
Q

T
T T T
+ even odd
T

odd even

+= £+ =+

+ K |

ly true!
), it’s still pretty easy:
tion that’s bottom, one

1't be executed)

More on soundness: example proof

e Now we need to handle the more

op(c) S y(T (a

1))

in the middle

More on soundness: example proof

e Now we need to handle the more
o we could do them one-by-one...

op(c) S y(T (a

1))

in the middle

op(c) S y(T (a

More on soundness: example proof @

e Now we need to handle the more in the middle
o we could do them one-by-one...
o but we can skip some because addition is commutative
m sowedon’t need toworry about order

More on soundness: example proof

[Nowwen“‘l"“IA----“-LIAA_“ B
even odd

o weco T

op(c) € V(T (a

1))

in the middle

o butw
m SO

even

odd

1
1) is commutative

-der
—+
1 in other words, the
two cases

—+ are the same!

op(c) S y(T (a

More on soundness: example proof @

e Now we need to handle the more in the middle
o we could do them one-by-one...
o but we can skip some because addition is commutative
m sowedon’t need toworry about order
e S0, we have three cases to deal with:

op(c) S y(T (a

More on soundness: example proof @

e Now we need to handle the more in the middle
o we could do them one-by-one...
o but we can skip some because addition is commutative
m sowedon’t need toworry about order
e 5o, we have three cases to deal with:
1. eveninteger + even integer is an even integer
2. oddinteger + odd integer is an even integer
3. oddinteger + even integer is an odd integer

op(c) S y(T (a

More on soundness: example proof @

e Now we need to handle the more in the middle
o we could do them one-by-one...
o but we can skip some because addition is commutative
m sowedon’t need toworry about order
e 5o, we have three cases to deal with:
1. eveninteger + even integer is an even integer
2. oddinteger + odd integer is an even integer
3. oddinteger + even integer is an odd integer
e wedispatch these three by considering each case individually
o they'’re all basically the same, so we're only going to do one

op(c) S y(T (a

More on soundness: example proof @

e Now we need to handle the more in the middle
o we could do them one-by-one...
o but we can skip some because addition is commutative
m sowedon’t need toworry about order
e 5o, we have three cases to deal with:
1. eveninteger + even integer is an even integer
2. oddinteger + odd integer is an even integer
3. oddinteger + even integer is an odd integer
e wedispatch these three by considering each case individually
o they'’re all basically the same, so we're only going to do one

More on soundness: example proof

e cissome addition statementx+y

op(c) S y(T (a

1))

op(c) S y(T (a

More on soundness: example proof @
e cissome addition statementx+y
o we know that concretely x is odd and y is even (why?)
m formally, we would statethisasx%2=1andy%2=0

More on soundness: example proof

e cissome addition statementx+y

op(c) S y(T (a

1))

o we know that concretely x is odd and y is even (why?)
m formally, we would statethisasx%2=1andy%2=0

e whatisop(c)?

op(c) S y(T (a

More on soundness: example proof @
e cissome addition statementx+y
o we know that concretely x is odd and y is even (why?)
m formally, we would statethisasx%2=1andy%2=0
e whatisop(c)?
o representxas2a+ 1andyas2bforsomea, b (how?)

op(c) S y(T (a

More on soundness: example proof @
e cissome addition statementx+y
o we know that concretely x is odd and y is even (why?)
m formally, we would statethisasx%2=1andy%2=0
e whatisop(c)?
o representxas2a+ 1andyas2bforsomea, b (how?)
o 2a+1+2b=2(a+b)+ 1, which we can easily prove is the set of
all odd integers

op(c) S y(T (a

More on soundness: example proof @
e cissome addition statementx+y
o we know that concretely x is odd and y is even (why?)
m formally, we would statethisasx%2=1andy%2=0
e whatisop(c)?
o representxas2a+ 1andyas2bforsomea, b (how?)
o 2a+1+2b=2(a+b)+ 1, which we can easily prove is the set of
all odd integers
e what’s a(c)?

op(c) S y(T (a

More on soundness: example proof @
e cissome addition statementx+y
o we know that concretely x is odd and y is even (why?)
m formally, we would statethisasx%2=1andy%2=0
e whatisop(c)?
o representxas2a+ 1andyas2bforsomea, b (how?)
o 2a+1+2b=2(a+b)+ 1, which we can easily prove is the set of
all odd integers
e what’s a(c)?
o da(x)is odd (the abstract value), and a(y) is even (the AV)

op(c) S y(T (a

More on soundness: example proof @
e cissome addition statementx+y
o we know that concretely x is odd and y is even (why?)
m formally, we would statethisasx%2=1andy%2=0
e whatisop(c)?
o representxas2a+ 1andyas2bforsomea, b (how?)
o 2a+1+2b=2(a+b)+ 1, which we can easily prove is the set of
all odd integers
e what’s a(c)?
o da(x)is odd (the abstract value), and a(y) is even (the AV)
e T (alc))isjustapplying our transfer function: result is the odd AV

More on soundness: example proof

op(c) S y(T (a

1))

cis some addition statement x +y
o we know that concretely x is odd and y is even (why?)
m formally, we would statethisasx%2=1andy%2=0
what is op(c)?
o representxas2a+ 1andyas2bforsomea, b (how?)
o 2a+1+2b=2(a+b)+ 1, which we can easily prove is the set of
all odd integers
what’s a(c)?
o da(x)is odd (the abstract value), and a(y) is even (the AV)
T (a(c)) is just applying our transfer function: result is the odd AV
y(odd) is the set of all odd integers, which does contain itself

More on soundness: example proof

op(c) S y(T (a

1))

cis some addition statement x +y
o we know that concretely x is odd and y is even (why?)
m formally, we would statethisasx%2=1andy%2=0
what is op(c)?
o representxas2a+ 1andyas2bforsomea, b (how?)
o 2a+1+2b=2(a+b)+ 1, which we can easily prove is the set of
all odd integers
what’s a(c)?
o da(x)is odd (the abstract value), and a(y) is even (the AV)
T (a(c)) is just applying our transfer function: result is the odd AV
y(odd) is the set of all odd integers, which does contain itself

Agenda: abstract interpretation, part 2

review and clarifications from last week
soundness

refinement and branching

widening

Stein’s algorithm example

Refinement

Consider the following program:

x = 0

while (x < 3):
X = x + 1

print x

Refinement

Consider the following program:

x = 0

while (x < 3):
X = x + 1

print x

What value is printed?

Refinement

Consider the following program:

x = 0

while (x < 3):
X = x + 1

print x

What value is printed?
How do you know?

Refinement

Consider the following program:

x = 0

while (x < 3):
X = x + 1

print x

What value is printed?
How do you know?

Insight: anything you can figure
out by reasoning through the
program by hand, an abstract
interpretation can do too!

Refinement

Consider the following program:

x = 0

while (x < 3):
X = x + 1

print x

top

S .
210 1 2

bottom

Refinement

Consider the following program:

x = 0

while (x < 3):
X = x + 1

print x

top

S .
210 1 2

bottom

not enough! need sets

draw in the correct
Refinement lattice here:

Consider the following program:

x = 0

while (x < 3):
X = x + 1

print x

Refinement

Consider the following program:

x = 0

while (x < 3):
X = x + 1

print x

draw in the correct
lattice here:

top

N
(-1,0} {0, 1}

NN ////)
-2 -1 0 2 ..

bottom

(actually need to extend this to 4 layers,
but there’s not room on the slide)

Refinement

Consider the following program:

X

while

= 0
(x < 3):
X = x + 1

print x

Does this permit us to prove
the value of x at the end?

g

~

draw in the correct
lattice here:

top

N
(-1,0} {0, 1}

NN ////)
.. 2 -10 2 ..

Al

bottom

(actually need to extend this to 4 layers,
but there’s not room on the slide)

Refinement

Consider the following program:

X

while

= 0
(x < 3):
X = x + 1

print x

Does this permit us to prove
the value of x at the end?

\NO (need transfer function)

~

draw in the correct
lattice here:

top

N
(-1,0} {0, 1}

NN ////)
.. 2 -10 2 ..

Al

bottom

(actually need to extend this to 4 layers,
but there’s not room on the slide)

Refinement

e We need a transfer function for branching

Refinement

e We need a transfer function for branching
o when we exit the while loop, we know the loop guard is false

Refinement

e We need a transfer function for branching
o when we exit the while loop, we know the loop guard is false
e These transfer functions are called refinements because they
typically involve a greatest lower bound

Refinement

e We need a transfer function for branching
o when we exit the while loop, we know the loop guard is false
e These transfer functions are called refinements because they
typically involve a greatest lower bound
o arefinement rules out some possible states

Refinement

e We need a transfer function for branching

o when we exit the while loop, we know the loop guard is false
e These transfer functions are called refinements because they
typically involve a greatest lower bound
o arefinement rules out some possible states
e Refinements are defined over the of the
language

Refinement

e We need a transfer function for branching

o when we exit the while loop, we know the loop guard is false
e These transfer functions are called refinements because they
typically involve a greatest lower bound
o arefinement rules out some possible states
e Refinements are defined over the of the
language
o for our example, we need a refinement for >=

Refinement

e We need a transfer function for branching

o when we exit the while loop, we know the loop guard is false
e These transfer functions are called refinements because they

typically involve a greatest lower bound

o arefinement rules out some possible states
e Refinements are defined over the of the

language

o for our example, we need a refinement for >=

o why>=andnot<?

Refinement

e We need a transfer function for branching

o when we exit the while loop, we know the loop guard is false
e These transfer functions are called refinements because they

typically involve a greatest lower bound

o arefinement rules out some possible states
e Refinements are defined over the of the

language

o for our example, we need a refinement for >=

o why>=andnot<?

m loopguard is false, so we invert the operator

Refinement

Consider the following program:

x = 0

while (x < 3):
X = x + 1

print x

(on the whiteboard. Start by drawing a CFG, then execute the algorithm. Put the CFG to the side and don’t erase it.)

Widening

e What if we want to build a bigger constant propagation lattice?

Widening

e What if we want to build a bigger constant propagation lattice?
o the previous example only worked because we knew that we
only needed at most 4 values at a time

Widening

e What if we want to build a bigger constant propagation lattice?
o the previous example only worked because we knew that we
only needed at most 4 values at a time
o inthereal world, we don’t know we'll need
for any given program!

Widening

e What if we want to build a bigger constant propagation lattice?

o the previous example only worked because we knew that we
only needed at most 4 values at a time

o inthereal world, we don’t know we'll need
for any given program!

o it would be nice if we could have sets of arbitrary size

Widening

e What if we want to build a bigger constant propagation lattice?

O

the previous example only worked because we knew that we
only needed at most 4 values at a time

in the real world, we don’t know we'll need

for any given program!

it would be nice if we could have sets of arbitrary size

m and we shouldn’t need to reimplement our analysis each
time we need to reason about differently-sized sets

Widening

e What if we want to build a bigger constant propagation lattice?

O

the previous example only worked because we knew that we

only needed at most 4 values at a time

in the real world, we don’t know we'll need

for any given program!

it would be nice if we could have sets of arbitrary size

m and we shouldn’t need to reimplement our analysis each
time we need to reason about differently-sized sets

do you think that’s possible?

Widening

e What if we want to build a bigger constant propagation lattice?

O

the previous example only worked because we knew that we

only needed at most 4 values at a time

in the real world, we don’t know we'll need

for any given program!

it would be nice if we could have sets of arbitrary size

m and we shouldn’t need to reimplement our analysis each
time we need to reason about differently-sized sets

do you think that’s possible?

m Wecanuse to allow this (sort of)

Widening

Definition: a widening operator is a predefined policy to take a
particular upper bound if the abstract value at a particular location
has changed too many times

Widening

Definition: a widening operator is a predefined policy to take a

particular upper bound if the abstract value at a particular location

has changed too many times

e effectively, this guarantees termination by the number
of times that a particular value can change, even if the lattice is of
infinite size

Widening

Definition: a widening operator is a predefined policy to take a

particular upper bound if the abstract value at a particular location
has changed too many times

e effectively, this guarantees termination by the number
of times that a particular value can change, even if the lattice is of
infinite size

e thisissafe because the analysis isn’'t required to take the least
upper bound so long as it chooses an upper bound

Widening

Definition: a widening operator is a predefined policy to take a
particular upper bound if the abstract value at a particular location
has changed too many times

e effectively, this guarantees termination by the number
of times that a particular value can change, even if the lattice is of
infinite size

e thisissafe because the analysis isn’'t required to take the least
upper bound so long as it chooses an upper bound

e example widening operator for constant propagation:
o if an abstract value has changed at least five times, go to top

Widening
Let’s return to the previous example:

x = 0

while (x < 3):
X = x + 1

print x

Widening
Let’s return to the previous example:

x = 0

while (x < 3 10):
X = x + 1

print x

Widening

e The main advantage of widening is that it permits lattices with
infinite height

Widening

e The main advantage of widening is that it permits lattices with
infinite height
e Thedownside is that itintroduces additional
o but abstract interpretation was always imprecise, so that’s
okay

Widening

e The main advantage of widening is that it permits lattices with
infinite height

e Thedownside is that itintroduces additional
o but abstract interpretation was always imprecise, so that’s
okay
e A nice fact about implementing an abstract interpretation is that
it is always safe to apply a widening operator

Widening

e The main advantage of widening is that it permits lattices with
infinite height

e Thedownside is that itintroduces additional
o but abstract interpretation was always imprecise, so that’s
okay
e A nice fact about implementing an abstract interpretation is that
it is always safe to apply a widening operator
o this means it’s easy to support complex language features: just
immediately widen any values that they impact
m “gototop’isasound policyin all situations

Agenda: abstract interpretation, part 2

review and clarifications from last week
soundness

refinement and branching

widening

Stein’s algorithm example

Another example: Stein’s algorithm

def gcd(int a, int b):
if a == 0 or b ==
return O
int expt = 0
while a 1s even and b 1s even:

a =a/ 2
b=Db / 2
expt = expt + 1

while a != b:
if a is even: a = a / 2
elif b is even: b =Db / 2
elif a > b: a = (a - b) / 2

else: b= (b -a) / 2
return a * 2%expt

Another example: Stein’s algorithm

def gcd(int a, int b):
if a == 0 or b ==
return O
int expt = 0

while a 1s even and b 1s even:

a =a/ 2

b =Db/ 2

expt = expt + 1
while a != b:

if a 1is even: a =

elif b is even: Db

elif a > b: a = (a

else: b = (b - a)
return a * 2%expt

a

/

/
b

2

b

2
/
)

2
/ 2

First question: does this
program ever divide by zero?

kTake a moment and discuss.

~

Another example: Stein’s algorithm

def gcd(int a, int b):
if a == 0 or b ==
return O
int expt = 0

while a 1s even and b 1s even:

a =a/ 2

b =Db/ 2

expt = expt + 1
while a != b:

if a 1is even: a =

elif b is even: Db

elif a > b: a = (a

else: b = (b - a)
return a * 2%expt

a

/

First question: does this
program ever divide by zero?
kTake a moment and discuss.

~

Answer: definitely not!

/

b

- b
2

2
/ 2
) /2

Another example: Stein’s algorithm

def gcd(int a, int b):
if a == 0 or b ==
return O
int expt = 0

while a 1s even and b 1s even:

a=a/ 2
b =Db/ 2
expt = expt + 1

while a != b:
if a is even: =a/
elif b is even: b = Db
elif a > b: a = (a

else: b = (b - a) / 2
return a * 2%expt

~NDN

b

~—

2
/ 2

First question: does this
program ever divide by zero?

kTake a moment and discuss.

~

Answer: definitely not!

e alldivisions are by 2
o 2!=0

Another example: Stein’s algorithm

def gcd(int a, int b):
if a == 0 or b ==
return O
int expt = 0

while a 1s even and b 1s even:

a=a/ 2
b =Db/ 2
expt = expt + 1

while a != b:
if a is even: =a/
elif b is even: b = Db
elif a > b: a = (a

else: b = (b - a) / 2
return a * 2%expt

~NDN

b

~—

2
/ 2

First question: does this
program ever divide by zero?

kTake a moment and discuss.

~

Answer: definitely not!

e alldivisions are by 2
o 2!=0

e ‘constant propagation”
can prove no divisions by
zero!

Another example: Stein’s algorithm

def gcd(

int a, int Db):

if a == 0 or b ==

retu
int ex
while
a =
b =
expt
while
if a
elif
elif

else:

return

rn O
pt = 0

a 1s even and b 1s even:

a / 2
b / 2
= expt + 1
a !'= b:
is even: a =
b is even: b
a > b: a = (a
b = (b - a)
a * 27expt

a

/

/
b

2

b

2
/
)

2
/ 2

~ N\
" Next question: does this A
program terminate on all

\ inputs? Take a moment and
\discuss. (Hint:draw a CFG.))

Another example: Stein’s algorithm

def gcd(int a, int b):
if a == 0 or b ==
return O
int expt = 0

while a 1s even and b 1s even:

a =a/ 2
b=Db / 2
expt = expt + 1

while a != b:
if a is even: a = a / 2
elif b is even: b =Db / 2
elif a > b: a = (a - b) / 2

else: b = (b - a) / 2
return a * 2%expt

-
" Next question: does this A

\

program terminate on all
inputs? Take a moment and

\discuss. (Hint:draw a CFG.))

To prove termination, we need
to show that both while loop
guards are

Another example: Stein’s algorithm

def gcd(int a, int b):
if a == 0 or b ==
return O
int expt = 0

while a 1s even and b 1s even:

a =a/ 2
b =Db/ 2
expt = expt + 1

while a != b:
if a is even: a = a / 2
elif b is even: b =Db / 2
elif a > b: a = (a - b) / 2

else: b = (b - a) / 2
return a * 2%expt

N\
" Next question: does this R
program terminate on all
inputs? Take a moment and

\discuss. (Hint:draw a CFG.))

To prove termination, we need
to show that both while Ioop
guards are

e Ist:aisoddorbis odd

Another example: Stein’s algorithm

def gcd(int a, int b):
if a == 0 or b ==
return O
int expt = 0

while a 1s even and b 1s even:

a =a/ 2
b =Db/ 2
expt = expt + 1

while a != b:
if a is even: a = a / 2
elif b is even: b =Db / 2
elif a > b: a = (a - b) / 2

else: b = (b - a) / 2
return a * 2%expt

N\
" Next question: does this R
program terminate on all
inputs? Take a moment and

\discuss. (Hint:draw a CFG.))

To prove termination, we need
to show that both while Ioop
guards are

e Ist:aisoddorbis odd

e 2nd:aeventually equalsb

Another example: Stein’s algorithm: parity

def gcd(

int a, int Db):

if a == 0 or b ==

retu
int ex
while
a =
b =
expt
while
if a
elif
elif

else:

return

rn O
pt = 0

a 1s even and b 1s even:

a / 2
b / 2
= expt + 1
a !'= b:
is even: a =
b is even: b
a > b: a = (a
b = (b - a)
a * 27expt

a

/

/
b

2

b

2
/
)

2
/ 2

Fortunately, we already know an
analysis for parity. Let’s use it (on

the board; requires a CFG).

Another example: Stein’s algorithm: parity

def gcd(

int a, int Db):

if a == 0 or b ==

retu
int ex
while
a =
b =
expt
while
if a
elif
elif

else:

return

rn O
pt = 0

a 1s even and b 1s even:

a / 2
b / 2
= expt + 1
a !'= b:
is even: a =
b is even: b
a > b: a = (a
b = (b - a)
a * 27expt

a

/

/
b

2

b

2
/
)

2
/ 2

Fortunately, we already know an
analysis for parity. Let’s use it (on
the board; requires a CFG).

e weranintoaproblem:we
can't prove thataand b are
eventually odd!

o thetransfer function for
even/is2returnsT

Another example: Stein’s algorithm: parity

def gcd(

int a, int Db):

if a == 0 or b ==

retu
int ex
while
a =
b =
expt
while
if a
elif
elif

else:

return

rn O
pt = 0

a 1s even and b 1s even:

a / 2
b / 2
= expt + 1
a !'= b:
is even: a =
b is even: b
a > b: a = (a
b = (b - a)
a * 27expt

a

/

/

b

- b
2

2
/ 2
) /2

Fortunately, we already know an
analysis for parity. Let’s use it (on
the board; requires a CFG).

e weranintoaproblem:we
can't prove thataand b are
eventually odd!

o thetransfer function for
even/is2returnsT

e inthiscase, that’s actually
correct!

o the program does not
terminate on all inputs
o -1, 1isacounterexample

Course Announcements

e PA2duetoday!

e PA3c1 (codegen testing) is due on Friday
o all gas, no brakes

e My OH on Wednesday will be later than usual (4-5 instead of
3:30-4:30), because of a CS faculty meeting until 4
o might even start a little bit later...

