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An abstract interpretation formally has two components:
● an abstract domain over which to reason, which is composed of:

○ a set of abstract values
○ an ordering operation (e.g., LUB)
○ together these form a lattice

● a set of transfer functions that tell the abstract interpreter how 
to reason over that abstract domain
○ one for each kind of operation in the underlying 

programming language (e.g., one for +, one for -, etc.)
○ usually represented as tables
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● last week, I went through an extended example of how to get a 
parity analysis to work on one program
○ however, that was just an example!

■ an abstract interpretation is applicable to any program
○ one of the key challenges in abstract interpretation design is 

figuring out the right set of examples to handle precisely
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Control Flow Graphs

Definition: a control flow graph (or CFG) is a representation, using 
graph notation, of all paths that might be traversed through a program 
during its execution

● this is the internal representation used by most static analysis 
tools

● nodes in the CFG are basic blocks
○ a basic block is a sequence of instructions that always execute 

together
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Control Flow Graphs: Example

x <- 0 ;
while x <= 6 loop

x <- x + 1
pool ;
x <- x + 2 ;
out_int(x)

x <- 0

x <= 6

x <- x + 1

true false

x <- x + 2 ;
out_int(x)

entry

exit



Agenda: abstract interpretation, part 2

● review and clarifications from last week
● soundness
● refinement and branching
● widening
● Stein’s algorithm example
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interpretation to produce sound program analyses
○ that is, analyses without false negatives

● The key idea to demonstrate that an abstract interpretation is 
sound is the galois connection between a concrete value and the 
concretization of its abstraction function
○ ideally, we’d like ∀ x, γ(α(x)) = x
○ but this is too strong: approximation may cause us to lose 

information! So, the standard formalism is:
■ ∀ x, x ∈ γ(α(x))

And, it’s also necessary to show 
that the Galois connection holds 
for the transfer functions!
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Concrete state Concrete state

concrete 
execution

Abstract state Abstract state

abstraction 
function (α)

concretization 
function (γ)

transfer 
functions

Do the green and orange paths always lead to the same concrete state?

What we need to show 
is that for all transfer 
functions, the green 
path is a subset of the 
orange path
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Refinement

Consider the following program:

x = 0
while (x < 3):
  x = x + 1
print x

What value is printed?
How do you know?

Insight: anything you can figure 
out by reasoning through the 
program by hand, an abstract 
interpretation can do too!
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print x
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Refinement

Consider the following program:

x = 0
while (x < 3):
  x = x + 1
print x

(actually need to extend this to 4 layers, 
but there’s not room on the slide)

draw in the correct 
lattice here:

Does this permit us to prove 
the value of x at the end?
NO (need transfer function)
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Refinement

● We need a transfer function for branching
○ when we exit the while loop, we know the loop guard is false

● These transfer functions are called refinements because they 
typically involve a greatest lower bound
○ a refinement rules out some possible states

● Refinements are defined over the boolean operators of the 
language
○ for our example, we need a refinement for >=
○ why >= and not < ?

■ loop guard is false, so we invert the operator



Refinement

Consider the following program:

x = 0
while (x < 3):
  x = x + 1
print x

(on the whiteboard. Start by drawing a CFG, then execute the algorithm. Put the CFG to the side and don’t erase it.)
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● What if we want to build a bigger constant propagation lattice?
○ the previous example only worked because we knew that we 

only needed at most 4 values at a time
○ in the real world, we don’t know how many values we’ll need 

for any given program!
○ it would be nice if we could have sets of arbitrary size

■ and we shouldn’t need to reimplement our analysis each 
time we need to reason about differently-sized sets

○ do you think that’s possible?
■ We can use widening operators to allow this (sort of)
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Widening

Definition: a widening operator is a predefined policy to take a 
particular upper bound if the abstract value at a particular location 
has changed too many times
● effectively, this guarantees termination by bounding the number 

of times that a particular value can change, even if the lattice is of 
infinite size

● this is safe because the analysis isn’t required to take the least 
upper bound so long as it chooses an upper bound

● example widening operator for constant propagation: 
○ if an abstract value has changed at least five times, go to top
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Let’s return to the previous example:

x = 0
while (x < 3 10):
  x = x + 1
print x
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Widening

● The main advantage of widening is that it permits lattices with 
infinite height

● The downside is that it introduces additional imprecision
○ but abstract interpretation was always imprecise, so that’s 

okay
● A nice fact about implementing an abstract interpretation is that 

it is always safe to apply a widening operator
○ this means it’s easy to support complex language features: just 

immediately widen any values that they impact
■ “go to top” is a sound policy in all situations



Agenda: abstract interpretation, part 2

● review and clarifications from last week
● soundness
● refinement and branching
● widening
● Stein’s algorithm example
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First question: does this 
program ever divide by zero?
Take a moment and discuss.

Answer: definitely not!
● all divisions are by 2

○ 2 != 0
● “constant propagation” 

can prove no divisions by 
zero!
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Another example: Stein’s algorithm

def gcd(int a, int b):
  if a == 0 or b == 0:
    return 0
  int expt = 0
  while a is even and b is even:
    a = a / 2
    b = b / 2
    expt = expt + 1
  while a != b:
    if a is even: a = a / 2
    elif b is even: b = b / 2
    elif a > b: a = (a - b) / 2
    else: b = (b - a) / 2
  return a * 2^expt

First question: does this 
program ever divide by zero?
Take a moment and discuss.

Next question: does this 
program terminate on all 
inputs? Take a moment and 
discuss. (Hint: draw a CFG.)

To prove termination, we need 
to show that both while loop 
guards are eventually false.
● 1st: a is odd or b is odd
● 2nd: a eventually equals b
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Another example: Stein’s algorithm: parity

def gcd(int a, int b):
  if a == 0 or b == 0:
    return 0
  int expt = 0
  while a is even and b is even:
    a = a / 2
    b = b / 2
    expt = expt + 1
  while a != b:
    if a is even: a = a / 2
    elif b is even: b = b / 2
    elif a > b: a = (a - b) / 2
    else: b = (b - a) / 2
  return a * 2^expt

Fortunately, we already know an 
analysis for parity. Let’s use it (on 
the board; requires a CFG).
● we ran into a problem: we 

can’t prove that a and b are 
eventually odd!
○ the transfer function for 

even / is2 returns T
● in this case, that’s actually 

correct!
○ the program does not 

terminate on all inputs
○ -1, 1 is a counterexample



Course Announcements

● PA2 due today!
● PA3c1 (codegen testing) is due on Friday

○ all gas, no brakes
● My OH on Wednesday will be later than usual (4-5 instead of 

3:30-4:30), because of a CS faculty meeting until 4
○ might even start a little bit later…


