
Abstract Interpretation (2/2)
Martin Kellogg

Review: definitions

Review: definitions

An abstract interpretation formally has two components:

Review: definitions

An abstract interpretation formally has two components:
● an abstract domain over which to reason, which is composed of:

Review: definitions

An abstract interpretation formally has two components:
● an abstract domain over which to reason, which is composed of:

○ a set of abstract values

Review: definitions

An abstract interpretation formally has two components:
● an abstract domain over which to reason, which is composed of:

○ a set of abstract values
○ an ordering operation (e.g., LUB)

Review: definitions

An abstract interpretation formally has two components:
● an abstract domain over which to reason, which is composed of:

○ a set of abstract values
○ an ordering operation (e.g., LUB)
○ together these form a lattice

Review: definitions

An abstract interpretation formally has two components:
● an abstract domain over which to reason, which is composed of:

○ a set of abstract values
○ an ordering operation (e.g., LUB)
○ together these form a lattice

● a set of transfer functions that tell the abstract interpreter how
to reason over that abstract domain

Review: definitions

An abstract interpretation formally has two components:
● an abstract domain over which to reason, which is composed of:

○ a set of abstract values
○ an ordering operation (e.g., LUB)
○ together these form a lattice

● a set of transfer functions that tell the abstract interpreter how
to reason over that abstract domain
○ one for each kind of operation in the underlying

programming language (e.g., one for +, one for -, etc.)

Review: definitions

An abstract interpretation formally has two components:
● an abstract domain over which to reason, which is composed of:

○ a set of abstract values
○ an ordering operation (e.g., LUB)
○ together these form a lattice

● a set of transfer functions that tell the abstract interpreter how
to reason over that abstract domain
○ one for each kind of operation in the underlying

programming language (e.g., one for +, one for -, etc.)
○ usually represented as tables

Concrete vs abstract domains

Concrete vs abstract domains

● the concrete domain of a variable is the set of values that the
variable might actually take on during execution

Concrete vs abstract domains

● the concrete domain of a variable is the set of values that the
variable might actually take on during execution

concrete
domain

Concrete vs abstract domains

● the concrete domain of a variable is the set of values that the
variable might actually take on during execution

● an abstract domain is a layer of indirection on top of the concrete
domain that splits it into a smaller number of sets

concrete
domain

Concrete vs abstract domains

● the concrete domain of a variable is the set of values that the
variable might actually take on during execution

● an abstract domain is a layer of indirection on top of the concrete
domain that splits it into a smaller number of sets

concrete
domain

abstract
domain

Concrete vs abstract domains

● the concrete domain of a variable is the set of values that the
variable might actually take on during execution

● an abstract domain is a layer of indirection on top of the concrete
domain that splits it into a smaller number of sets

concrete
domain

abstract
domain

α

Concrete vs abstract domains

● the concrete domain of a variable is the set of values that the
variable might actually take on during execution

● an abstract domain is a layer of indirection on top of the concrete
domain that splits it into a smaller number of sets

concrete
domain

abstract
domainγ

α

Review: abstract vs concrete interpretation

Concrete state Concrete state

concrete
execution

Review: abstract vs concrete interpretation

Concrete state Concrete state

concrete
execution

Abstract state

abstraction
function (α)

Review: abstract vs concrete interpretation

Concrete state Concrete state

concrete
execution

Abstract state Abstract state

abstraction
function (α)

transfer
functions

Review: abstract vs concrete interpretation

Concrete state Concrete state

concrete
execution

Abstract state Abstract state

abstraction
function (α)

concretization
function (γ)

transfer
functions

Review: abstract vs concrete interpretation

Concrete state Concrete state

concrete
execution

Abstract state Abstract state

abstraction
function (α)

concretization
function (γ)

transfer
functions

soundness means that the green path is a subset of the orange path

Review: clarifications

Review: clarifications

● last week, I went through an extended example of how to get a
parity analysis to work on one program

Review: clarifications

● last week, I went through an extended example of how to get a
parity analysis to work on one program
○ however, that was just an example!

■ an abstract interpretation is applicable to any program

Review: clarifications

● last week, I went through an extended example of how to get a
parity analysis to work on one program
○ however, that was just an example!

■ an abstract interpretation is applicable to any program
○ one of the key challenges in abstract interpretation design is

figuring out the right set of examples to handle precisely

Control Flow Graphs

Control Flow Graphs

Definition: a control flow graph (or CFG) is a representation, using
graph notation, of all paths that might be traversed through a program
during its execution

Control Flow Graphs

Definition: a control flow graph (or CFG) is a representation, using
graph notation, of all paths that might be traversed through a program
during its execution

● this is the internal representation used by most static analysis
tools

Control Flow Graphs

Definition: a control flow graph (or CFG) is a representation, using
graph notation, of all paths that might be traversed through a program
during its execution

● this is the internal representation used by most static analysis
tools

● nodes in the CFG are basic blocks

Control Flow Graphs

Definition: a control flow graph (or CFG) is a representation, using
graph notation, of all paths that might be traversed through a program
during its execution

● this is the internal representation used by most static analysis
tools

● nodes in the CFG are basic blocks
○ a basic block is a sequence of instructions that always execute

together

Control Flow Graphs: Example

x <- 0 ;
while x <= 6 loop

x <- x + 1
pool ;
x <- x + 2 ;
out_int(x)

Control Flow Graphs: Example

x <- 0 ;
while x <= 6 loop

x <- x + 1
pool ;
x <- x + 2 ;
out_int(x)

x <- 0

Control Flow Graphs: Example

x <- 0 ;
while x <= 6 loop

x <- x + 1
pool ;
x <- x + 2 ;
out_int(x)

x <- 0

x <= 6

Control Flow Graphs: Example

x <- 0 ;
while x <= 6 loop

x <- x + 1
pool ;
x <- x + 2 ;
out_int(x)

x <- 0

x <= 6

x <- x + 1

true

Control Flow Graphs: Example

x <- 0 ;
while x <= 6 loop

x <- x + 1
pool ;
x <- x + 2 ;
out_int(x)

x <- 0

x <= 6

x <- x + 1

true

Control Flow Graphs: Example

x <- 0 ;
while x <= 6 loop

x <- x + 1
pool ;
x <- x + 2 ;
out_int(x)

x <- 0

x <= 6

x <- x + 1

true false

x <- x + 2 ;
out_int(x)

Control Flow Graphs: Example

x <- 0 ;
while x <= 6 loop

x <- x + 1
pool ;
x <- x + 2 ;
out_int(x)

x <- 0

x <= 6

x <- x + 1

true false

x <- x + 2 ;
out_int(x)

Control Flow Graphs: Example

x <- 0 ;
while x <= 6 loop

x <- x + 1
pool ;
x <- x + 2 ;
out_int(x)

x <- 0

x <= 6

x <- x + 1

true false

x <- x + 2 ;
out_int(x)

entry

Control Flow Graphs: Example

x <- 0 ;
while x <= 6 loop

x <- x + 1
pool ;
x <- x + 2 ;
out_int(x)

x <- 0

x <= 6

x <- x + 1

true false

x <- x + 2 ;
out_int(x)

entry

exit

Agenda: abstract interpretation, part 2

● review and clarifications from last week
● soundness
● refinement and branching
● widening
● Stein’s algorithm example

Correctness of Abstract Interpretation

Correctness of Abstract Interpretation

● I’ve claimed several times that it is possible to use abstract
interpretation to produce sound program analyses

Correctness of Abstract Interpretation

● I’ve claimed several times that it is possible to use abstract
interpretation to produce sound program analyses
○ that is, analyses without false negatives

Correctness of Abstract Interpretation

● I’ve claimed several times that it is possible to use abstract
interpretation to produce sound program analyses
○ that is, analyses without false negatives

● The key idea to demonstrate that an abstract interpretation is
sound is the galois connection between a concrete value and the
concretization of its abstraction function

Correctness of Abstract Interpretation

● I’ve claimed several times that it is possible to use abstract
interpretation to produce sound program analyses
○ that is, analyses without false negatives

● The key idea to demonstrate that an abstract interpretation is
sound is the galois connection between a concrete value and the
concretization of its abstraction function
○ ideally, we’d like ∀ x, γ(α(x)) = x

Correctness of Abstract Interpretation

● I’ve claimed several times that it is possible to use abstract
interpretation to produce sound program analyses
○ that is, analyses without false negatives

● The key idea to demonstrate that an abstract interpretation is
sound is the galois connection between a concrete value and the
concretization of its abstraction function
○ ideally, we’d like ∀ x, γ(α(x)) = x
○ but this is too strong: approximation may cause us to lose

information! So, the standard formalism is:
■ ∀ x, x ∈ γ(α(x))

Correctness of Abstract Interpretation

● I’ve claimed several times that it is possible to use abstract
interpretation to produce sound program analyses
○ that is, analyses without false negatives

● The key idea to demonstrate that an abstract interpretation is
sound is the galois connection between a concrete value and the
concretization of its abstraction function
○ ideally, we’d like ∀ x, γ(α(x)) = x
○ but this is too strong: approximation may cause us to lose

information! So, the standard formalism is:
■ ∀ x, x ∈ γ(α(x))

And, it’s also necessary to show
that the Galois connection holds
for the transfer functions!

Approximation!

Concrete state Concrete state

concrete
execution

Abstract state Abstract state

abstraction
function (α)

concretization
function (γ)

transfer
functions

Do the green and orange paths always lead to the same concrete state?

Remember this
diagram from earlier?

Remember this
diagram from earlier?Approximation!

Concrete state Concrete state

concrete
execution

Abstract state Abstract state

abstraction
function (α)

concretization
function (γ)

transfer
functions

Do the green and orange paths always lead to the same concrete state?

What we need to show
is that for all transfer
functions, the green
path is a subset of the
orange path

More on soundness: using a Galois connection

Concrete state Concrete state

concrete
execution

Abstract state Abstract state

abstraction
function (α)

concretization
function (γ)

transfer
functions

soundness means that the green path is a subset of the orange path

More on soundness: using a Galois connection

● how would we actually show that a particular abstract
interpretation is sound?

More on soundness: using a Galois connection

● how would we actually show that a particular abstract
interpretation is sound?

● here’s an algorithm for doing so:

More on soundness: using a Galois connection

● how would we actually show that a particular abstract
interpretation is sound?

● here’s an algorithm for doing so:
○ for each transfer function Top for some operation op:

More on soundness: using a Galois connection

● how would we actually show that a particular abstract
interpretation is sound?

● here’s an algorithm for doing so:
○ for each transfer function Top for some operation op:

■ prove that for all concrete states c:

More on soundness: using a Galois connection

● how would we actually show that a particular abstract
interpretation is sound?

● here’s an algorithm for doing so:
○ for each transfer function Top for some operation op:

■ prove that for all concrete states c:

 op(c) ⊆ γ(Top(α(c)))

More on soundness: using a Galois connection

● how would we actually show that a particular abstract
interpretation is sound?

● here’s an algorithm for doing so:
○ for each transfer function Top for some operation op:

■ prove that for all concrete states c:

 op(c) ⊆ γ(Top(α(c)))

possible results of concrete
execution (green line)

More on soundness: using a Galois connection

● how would we actually show that a particular abstract
interpretation is sound?

● here’s an algorithm for doing so:
○ for each transfer function Top for some operation op:

■ prove that for all concrete states c:

 op(c) ⊆ γ(Top(α(c)))

concretization

More on soundness: using a Galois connection

● how would we actually show that a particular abstract
interpretation is sound?

● here’s an algorithm for doing so:
○ for each transfer function Top for some operation op:

■ prove that for all concrete states c:

 op(c) ⊆ γ(Top(α(c)))

concretization of the result of applying
the transfer function

More on soundness: using a Galois connection

● how would we actually show that a particular abstract
interpretation is sound?

● here’s an algorithm for doing so:
○ for each transfer function Top for some operation op:

■ prove that for all concrete states c:

 op(c) ⊆ γ(Top(α(c)))

concretization of the result of applying
the transfer function to the abstraction of
the original concrete state

More on soundness: using a Galois connection

● how would we actually show that a particular abstract
interpretation is sound?

● here’s an algorithm for doing so:
○ for each transfer function Top for some operation op:

■ prove that for all concrete states c:

 op(c) ⊆ γ(Top(α(c)))

concretization of the result of applying
the transfer function to the abstraction of
the original concrete state (orange line)

More on soundness: example proof

● let’s carry out an example proof using this technique ourselves on
the plus transfer function from our simple parity analysis

More on soundness: example proof

● let’s carry out an example proof using this technique ourselves on
the plus transfer function from our simple parity analysis

op(c) ⊆ γ(Top(α
(c)))

More on soundness: example proof

● let’s carry out an example proof using this technique ourselves on
the plus transfer function from our simple parity analysis

{ even, odd } = top
 / \
 {even} {odd}
 \ /
 {} = bottom

op(c) ⊆ γ(Top(α
(c)))

More on soundness: example proof

● let’s carry out an example proof using this technique ourselves on
the plus transfer function from our simple parity analysis

{ even, odd } = top
 / \
 {even} {odd}
 \ /
 {} = bottom

+ T even odd 丄

T T T T 丄

even T even odd 丄

odd T odd even 丄

丄 丄 丄 丄 丄

op(c) ⊆ γ(Top(α
(c)))

More on soundness: example proof

● Let’s first dispense with the easy cases:

op(c) ⊆ γ(Top(α
(c)))

More on soundness: example proof

● Let’s first dispense with the easy cases:
○ if the transfer function entry is top, then it’s easy:

op(c) ⊆ γ(Top(α
(c)))

More on soundness: example proof

● Let’s first dispense with the easy cases:
○ if the transfer function entry is top, then it’s easy:

■ ∀ c. op(c) ⊆ { all integers } is trivially true!

op(c) ⊆ γ(Top(α
(c)))

More on soundness: example proof

● Let’s first dispense with the easy cases:
○ if the transfer function entry is top, then it’s easy:

■ ∀ c. op(c) ⊆ { all integers } is trivially true!

op(c) ⊆ γ(Top(α
(c)))

+ T even odd 丄

T T T T 丄

even T even odd 丄

odd T odd even 丄

丄 丄 丄 丄 丄

More on soundness: example proof

● Let’s first dispense with the easy cases:
○ if the transfer function entry is top, then it’s easy:

■ ∀ c. op(c) ⊆ { all integers } is trivially true!

op(c) ⊆ γ(Top(α
(c)))

+ T even odd 丄

T T T T 丄

even T even odd 丄

odd T odd even 丄

丄 丄 丄 丄 丄

More on soundness: example proof

● Let’s first dispense with the easy cases:
○ if the transfer function entry is top, then it’s easy:

■ ∀ c. op(c) ⊆ { all integers } is trivially true!
○ if the transfer function entry is bottom, it’s still pretty easy:

op(c) ⊆ γ(Top(α
(c)))

More on soundness: example proof

● Let’s first dispense with the easy cases:
○ if the transfer function entry is top, then it’s easy:

■ ∀ c. op(c) ⊆ { all integers } is trivially true!
○ if the transfer function entry is bottom, it’s still pretty easy:

■ for every entry in our transfer function that’s bottom, one
of the inputs is also bottom

op(c) ⊆ γ(Top(α
(c)))

More on soundness: example proof

● Let’s first dispense with the easy cases:
○ if the transfer function entry is top, then it’s easy:

■ ∀ c. op(c) ⊆ { all integers } is trivially true!
○ if the transfer function entry is bottom, it’s still pretty easy:

■ for every entry in our transfer function that’s bottom, one
of the inputs is also bottom

■ op({}) is always the empty set (it can’t be executed)

op(c) ⊆ γ(Top(α
(c)))

More on soundness: example proof

● Let’s first dispense with the easy cases:
○ if the transfer function entry is top, then it’s easy:

■ ∀ c. op(c) ⊆ { all integers } is trivially true!
○ if the transfer function entry is bottom, it’s still pretty easy:

■ for every entry in our transfer function that’s bottom, one
of the inputs is also bottom

■ op({}) is always the empty set (it can’t be executed)
■ {} ⊆ {}

op(c) ⊆ γ(Top(α
(c)))

More on soundness: example proof

● Let’s first dispense with the easy cases:
○ if the transfer function entry is top, then it’s easy:

■ ∀ c. op(c) ⊆ { all integers } is trivially true!
○ if the transfer function entry is bottom, it’s still pretty easy:

■ for every entry in our transfer function that’s bottom, one
of the inputs is also bottom

■ op({}) is always the empty set (it can’t be executed)
■ {} ⊆ {}
■ QED

op(c) ⊆ γ(Top(α
(c)))

More on soundness: example proof

● Let’s first dispense with the easy cases:
○ if the transfer function entry is top, then it’s easy:

■ ∀ c. op(c) ⊆ { all integers } is trivially true!
○ if the transfer function entry is bottom, it’s still pretty easy:

■ for every entry in our transfer function that’s bottom, one
of the inputs is also bottom

■ op({}) is always the empty set (it can’t be executed)
■ {} ⊆ {}
■ QED

op(c) ⊆ γ(Top(α
(c)))

+ T even odd 丄

T T T T 丄

even T even odd 丄

odd T odd even 丄

丄 丄 丄 丄 丄

More on soundness: example proof

● Let’s first dispense with the easy cases:
○ if the transfer function entry is top, then it’s easy:

■ ∀ c. op(c) ⊆ { all integers } is trivially true!
○ if the transfer function entry is bottom, it’s still pretty easy:

■ for every entry in our transfer function that’s bottom, one
of the inputs is also bottom

■ op({}) is always the empty set (it can’t be executed)
■ {} ⊆ {}
■ QED

op(c) ⊆ γ(Top(α
(c)))

+ T even odd 丄

T T T T 丄

even T even odd 丄

odd T odd even 丄

丄 丄 丄 丄 丄

More on soundness: example proof

● Now we need to handle the more complex cases in the middle

op(c) ⊆ γ(Top(α
(c)))

More on soundness: example proof

● Now we need to handle the more complex cases in the middle
○ we could do them one-by-one…

op(c) ⊆ γ(Top(α
(c)))

More on soundness: example proof

● Now we need to handle the more complex cases in the middle
○ we could do them one-by-one…
○ but we can skip some because addition is commutative

■ so we don’t need to worry about order

op(c) ⊆ γ(Top(α
(c)))

More on soundness: example proof

● Now we need to handle the more complex cases in the middle
○ we could do them one-by-one…
○ but we can skip some because addition is commutative

■ so we don’t need to worry about order

op(c) ⊆ γ(Top(α
(c)))

+ T even odd 丄

T T T T 丄

even T even odd 丄

odd T odd even 丄

丄 丄 丄 丄 丄

in other words, the
two orange cases
are the same!

More on soundness: example proof

● Now we need to handle the more complex cases in the middle
○ we could do them one-by-one…
○ but we can skip some because addition is commutative

■ so we don’t need to worry about order
● So, we have three cases to deal with:

op(c) ⊆ γ(Top(α
(c)))

More on soundness: example proof

● Now we need to handle the more complex cases in the middle
○ we could do them one-by-one…
○ but we can skip some because addition is commutative

■ so we don’t need to worry about order
● So, we have three cases to deal with:

1. even integer + even integer is an even integer
2. odd integer + odd integer is an even integer
3. odd integer + even integer is an odd integer

op(c) ⊆ γ(Top(α
(c)))

More on soundness: example proof

● Now we need to handle the more complex cases in the middle
○ we could do them one-by-one…
○ but we can skip some because addition is commutative

■ so we don’t need to worry about order
● So, we have three cases to deal with:

1. even integer + even integer is an even integer
2. odd integer + odd integer is an even integer
3. odd integer + even integer is an odd integer

● we dispatch these three by considering each case individually
○ they’re all basically the same, so we’re only going to do one

op(c) ⊆ γ(Top(α
(c)))

More on soundness: example proof

● Now we need to handle the more complex cases in the middle
○ we could do them one-by-one…
○ but we can skip some because addition is commutative

■ so we don’t need to worry about order
● So, we have three cases to deal with:

1. even integer + even integer is an even integer
2. odd integer + odd integer is an even integer
3. odd integer + even integer is an odd integer

● we dispatch these three by considering each case individually
○ they’re all basically the same, so we’re only going to do one

op(c) ⊆ γ(Top(α
(c)))

More on soundness: example proof
● c is some addition statement x + y

op(c) ⊆ γ(Top(α
(c)))

More on soundness: example proof
● c is some addition statement x + y

○ we know that concretely x is odd and y is even (why?)
■ formally, we would state this as x % 2 = 1 and y % 2 = 0

op(c) ⊆ γ(Top(α
(c)))

More on soundness: example proof
● c is some addition statement x + y

○ we know that concretely x is odd and y is even (why?)
■ formally, we would state this as x % 2 = 1 and y % 2 = 0

● what is op(c)?

op(c) ⊆ γ(Top(α
(c)))

More on soundness: example proof
● c is some addition statement x + y

○ we know that concretely x is odd and y is even (why?)
■ formally, we would state this as x % 2 = 1 and y % 2 = 0

● what is op(c)?
○ represent x as 2a + 1 and y as 2b for some a, b (how?)

op(c) ⊆ γ(Top(α
(c)))

More on soundness: example proof
● c is some addition statement x + y

○ we know that concretely x is odd and y is even (why?)
■ formally, we would state this as x % 2 = 1 and y % 2 = 0

● what is op(c)?
○ represent x as 2a + 1 and y as 2b for some a, b (how?)
○ 2a + 1 + 2b = 2(a+b) + 1, which we can easily prove is the set of

all odd integers

op(c) ⊆ γ(Top(α
(c)))

More on soundness: example proof
● c is some addition statement x + y

○ we know that concretely x is odd and y is even (why?)
■ formally, we would state this as x % 2 = 1 and y % 2 = 0

● what is op(c)?
○ represent x as 2a + 1 and y as 2b for some a, b (how?)
○ 2a + 1 + 2b = 2(a+b) + 1, which we can easily prove is the set of

all odd integers
● what’s α(c)?

op(c) ⊆ γ(Top(α
(c)))

More on soundness: example proof
● c is some addition statement x + y

○ we know that concretely x is odd and y is even (why?)
■ formally, we would state this as x % 2 = 1 and y % 2 = 0

● what is op(c)?
○ represent x as 2a + 1 and y as 2b for some a, b (how?)
○ 2a + 1 + 2b = 2(a+b) + 1, which we can easily prove is the set of

all odd integers
● what’s α(c)?

○ α(x) is odd (the abstract value), and α(y) is even (the AV)

op(c) ⊆ γ(Top(α
(c)))

More on soundness: example proof
● c is some addition statement x + y

○ we know that concretely x is odd and y is even (why?)
■ formally, we would state this as x % 2 = 1 and y % 2 = 0

● what is op(c)?
○ represent x as 2a + 1 and y as 2b for some a, b (how?)
○ 2a + 1 + 2b = 2(a+b) + 1, which we can easily prove is the set of

all odd integers
● what’s α(c)?

○ α(x) is odd (the abstract value), and α(y) is even (the AV)
● T+(α(c)) is just applying our transfer function: result is the odd AV

op(c) ⊆ γ(Top(α
(c)))

More on soundness: example proof
● c is some addition statement x + y

○ we know that concretely x is odd and y is even (why?)
■ formally, we would state this as x % 2 = 1 and y % 2 = 0

● what is op(c)?
○ represent x as 2a + 1 and y as 2b for some a, b (how?)
○ 2a + 1 + 2b = 2(a+b) + 1, which we can easily prove is the set of

all odd integers
● what’s α(c)?

○ α(x) is odd (the abstract value), and α(y) is even (the AV)
● T+(α(c)) is just applying our transfer function: result is the odd AV
● γ(odd) is the set of all odd integers, which does contain itself

op(c) ⊆ γ(Top(α
(c)))

More on soundness: example proof
● c is some addition statement x + y

○ we know that concretely x is odd and y is even (why?)
■ formally, we would state this as x % 2 = 1 and y % 2 = 0

● what is op(c)?
○ represent x as 2a + 1 and y as 2b for some a, b (how?)
○ 2a + 1 + 2b = 2(a+b) + 1, which we can easily prove is the set of

all odd integers
● what’s α(c)?

○ α(x) is odd (the abstract value), and α(y) is even (the AV)
● T+(α(c)) is just applying our transfer function: result is the odd AV
● γ(odd) is the set of all odd integers, which does contain itself

op(c) ⊆ γ(Top(α
(c)))

Agenda: abstract interpretation, part 2

● review and clarifications from last week
● soundness
● refinement and branching
● widening
● Stein’s algorithm example

Refinement

Consider the following program:

x = 0
while (x < 3):
 x = x + 1
print x

Refinement

Consider the following program:

x = 0
while (x < 3):
 x = x + 1
print x

What value is printed?

Refinement

Consider the following program:

x = 0
while (x < 3):
 x = x + 1
print x

What value is printed?
How do you know?

Refinement

Consider the following program:

x = 0
while (x < 3):
 x = x + 1
print x

What value is printed?
How do you know?

Insight: anything you can figure
out by reasoning through the
program by hand, an abstract
interpretation can do too!

Refinement

Consider the following program:

x = 0
while (x < 3):
 x = x + 1
print x

 top

… -2 -1 0 1 2 …

 bottom

Refinement

Consider the following program:

x = 0
while (x < 3):
 x = x + 1
print x

 top

… -2 -1 0 1 2 …

 bottom

not enough! need sets

Refinement

Consider the following program:

x = 0
while (x < 3):
 x = x + 1
print x

draw in the correct
lattice here:

 top

 … {-1, 0} {0, 1} …

… -2 -1 0 1 2 …

 bottom

Refinement

Consider the following program:

x = 0
while (x < 3):
 x = x + 1
print x

(actually need to extend this to 4 layers,
but there’s not room on the slide)

draw in the correct
lattice here:

 top

 … {-1, 0} {0, 1} …

… -2 -1 0 1 2 …

 bottom

Refinement

Consider the following program:

x = 0
while (x < 3):
 x = x + 1
print x

(actually need to extend this to 4 layers,
but there’s not room on the slide)

draw in the correct
lattice here:

Does this permit us to prove
the value of x at the end?

 top

 … {-1, 0} {0, 1} …

… -2 -1 0 1 2 …

 bottom

Refinement

Consider the following program:

x = 0
while (x < 3):
 x = x + 1
print x

(actually need to extend this to 4 layers,
but there’s not room on the slide)

draw in the correct
lattice here:

Does this permit us to prove
the value of x at the end?
NO (need transfer function)

Refinement

● We need a transfer function for branching

Refinement

● We need a transfer function for branching
○ when we exit the while loop, we know the loop guard is false

Refinement

● We need a transfer function for branching
○ when we exit the while loop, we know the loop guard is false

● These transfer functions are called refinements because they
typically involve a greatest lower bound

Refinement

● We need a transfer function for branching
○ when we exit the while loop, we know the loop guard is false

● These transfer functions are called refinements because they
typically involve a greatest lower bound
○ a refinement rules out some possible states

Refinement

● We need a transfer function for branching
○ when we exit the while loop, we know the loop guard is false

● These transfer functions are called refinements because they
typically involve a greatest lower bound
○ a refinement rules out some possible states

● Refinements are defined over the boolean operators of the
language

Refinement

● We need a transfer function for branching
○ when we exit the while loop, we know the loop guard is false

● These transfer functions are called refinements because they
typically involve a greatest lower bound
○ a refinement rules out some possible states

● Refinements are defined over the boolean operators of the
language
○ for our example, we need a refinement for >=

Refinement

● We need a transfer function for branching
○ when we exit the while loop, we know the loop guard is false

● These transfer functions are called refinements because they
typically involve a greatest lower bound
○ a refinement rules out some possible states

● Refinements are defined over the boolean operators of the
language
○ for our example, we need a refinement for >=
○ why >= and not < ?

Refinement

● We need a transfer function for branching
○ when we exit the while loop, we know the loop guard is false

● These transfer functions are called refinements because they
typically involve a greatest lower bound
○ a refinement rules out some possible states

● Refinements are defined over the boolean operators of the
language
○ for our example, we need a refinement for >=
○ why >= and not < ?

■ loop guard is false, so we invert the operator

Refinement

Consider the following program:

x = 0
while (x < 3):
 x = x + 1
print x

(on the whiteboard. Start by drawing a CFG, then execute the algorithm. Put the CFG to the side and don’t erase it.)

Widening

● What if we want to build a bigger constant propagation lattice?

Widening

● What if we want to build a bigger constant propagation lattice?
○ the previous example only worked because we knew that we

only needed at most 4 values at a time

Widening

● What if we want to build a bigger constant propagation lattice?
○ the previous example only worked because we knew that we

only needed at most 4 values at a time
○ in the real world, we don’t know how many values we’ll need

for any given program!

Widening

● What if we want to build a bigger constant propagation lattice?
○ the previous example only worked because we knew that we

only needed at most 4 values at a time
○ in the real world, we don’t know how many values we’ll need

for any given program!
○ it would be nice if we could have sets of arbitrary size

Widening

● What if we want to build a bigger constant propagation lattice?
○ the previous example only worked because we knew that we

only needed at most 4 values at a time
○ in the real world, we don’t know how many values we’ll need

for any given program!
○ it would be nice if we could have sets of arbitrary size

■ and we shouldn’t need to reimplement our analysis each
time we need to reason about differently-sized sets

Widening

● What if we want to build a bigger constant propagation lattice?
○ the previous example only worked because we knew that we

only needed at most 4 values at a time
○ in the real world, we don’t know how many values we’ll need

for any given program!
○ it would be nice if we could have sets of arbitrary size

■ and we shouldn’t need to reimplement our analysis each
time we need to reason about differently-sized sets

○ do you think that’s possible?

Widening

● What if we want to build a bigger constant propagation lattice?
○ the previous example only worked because we knew that we

only needed at most 4 values at a time
○ in the real world, we don’t know how many values we’ll need

for any given program!
○ it would be nice if we could have sets of arbitrary size

■ and we shouldn’t need to reimplement our analysis each
time we need to reason about differently-sized sets

○ do you think that’s possible?
■ We can use widening operators to allow this (sort of)

Widening

Definition: a widening operator is a predefined policy to take a
particular upper bound if the abstract value at a particular location
has changed too many times

Widening

Definition: a widening operator is a predefined policy to take a
particular upper bound if the abstract value at a particular location
has changed too many times
● effectively, this guarantees termination by bounding the number

of times that a particular value can change, even if the lattice is of
infinite size

Widening

Definition: a widening operator is a predefined policy to take a
particular upper bound if the abstract value at a particular location
has changed too many times
● effectively, this guarantees termination by bounding the number

of times that a particular value can change, even if the lattice is of
infinite size

● this is safe because the analysis isn’t required to take the least
upper bound so long as it chooses an upper bound

Widening

Definition: a widening operator is a predefined policy to take a
particular upper bound if the abstract value at a particular location
has changed too many times
● effectively, this guarantees termination by bounding the number

of times that a particular value can change, even if the lattice is of
infinite size

● this is safe because the analysis isn’t required to take the least
upper bound so long as it chooses an upper bound

● example widening operator for constant propagation:
○ if an abstract value has changed at least five times, go to top

Widening

Let’s return to the previous example:

x = 0
while (x < 3):
 x = x + 1
print x

Widening

Let’s return to the previous example:

x = 0
while (x < 3 10):
 x = x + 1
print x

Widening

● The main advantage of widening is that it permits lattices with
infinite height

Widening

● The main advantage of widening is that it permits lattices with
infinite height

● The downside is that it introduces additional imprecision
○ but abstract interpretation was always imprecise, so that’s

okay

Widening

● The main advantage of widening is that it permits lattices with
infinite height

● The downside is that it introduces additional imprecision
○ but abstract interpretation was always imprecise, so that’s

okay
● A nice fact about implementing an abstract interpretation is that

it is always safe to apply a widening operator

Widening

● The main advantage of widening is that it permits lattices with
infinite height

● The downside is that it introduces additional imprecision
○ but abstract interpretation was always imprecise, so that’s

okay
● A nice fact about implementing an abstract interpretation is that

it is always safe to apply a widening operator
○ this means it’s easy to support complex language features: just

immediately widen any values that they impact
■ “go to top” is a sound policy in all situations

Agenda: abstract interpretation, part 2

● review and clarifications from last week
● soundness
● refinement and branching
● widening
● Stein’s algorithm example

Another example: Stein’s algorithm

def gcd(int a, int b):
 if a == 0 or b == 0:
 return 0
 int expt = 0
 while a is even and b is even:
 a = a / 2
 b = b / 2
 expt = expt + 1
 while a != b:
 if a is even: a = a / 2
 elif b is even: b = b / 2
 elif a > b: a = (a - b) / 2
 else: b = (b - a) / 2
 return a * 2^expt

Another example: Stein’s algorithm

def gcd(int a, int b):
 if a == 0 or b == 0:
 return 0
 int expt = 0
 while a is even and b is even:
 a = a / 2
 b = b / 2
 expt = expt + 1
 while a != b:
 if a is even: a = a / 2
 elif b is even: b = b / 2
 elif a > b: a = (a - b) / 2
 else: b = (b - a) / 2
 return a * 2^expt

First question: does this
program ever divide by zero?
Take a moment and discuss.

Another example: Stein’s algorithm

def gcd(int a, int b):
 if a == 0 or b == 0:
 return 0
 int expt = 0
 while a is even and b is even:
 a = a / 2
 b = b / 2
 expt = expt + 1
 while a != b:
 if a is even: a = a / 2
 elif b is even: b = b / 2
 elif a > b: a = (a - b) / 2
 else: b = (b - a) / 2
 return a * 2^expt

First question: does this
program ever divide by zero?
Take a moment and discuss.

Answer: definitely not!

Another example: Stein’s algorithm

def gcd(int a, int b):
 if a == 0 or b == 0:
 return 0
 int expt = 0
 while a is even and b is even:
 a = a / 2
 b = b / 2
 expt = expt + 1
 while a != b:
 if a is even: a = a / 2
 elif b is even: b = b / 2
 elif a > b: a = (a - b) / 2
 else: b = (b - a) / 2
 return a * 2^expt

First question: does this
program ever divide by zero?
Take a moment and discuss.

Answer: definitely not!
● all divisions are by 2

○ 2 != 0

Another example: Stein’s algorithm

def gcd(int a, int b):
 if a == 0 or b == 0:
 return 0
 int expt = 0
 while a is even and b is even:
 a = a / 2
 b = b / 2
 expt = expt + 1
 while a != b:
 if a is even: a = a / 2
 elif b is even: b = b / 2
 elif a > b: a = (a - b) / 2
 else: b = (b - a) / 2
 return a * 2^expt

First question: does this
program ever divide by zero?
Take a moment and discuss.

Answer: definitely not!
● all divisions are by 2

○ 2 != 0
● “constant propagation”

can prove no divisions by
zero!

Another example: Stein’s algorithm

def gcd(int a, int b):
 if a == 0 or b == 0:
 return 0
 int expt = 0
 while a is even and b is even:
 a = a / 2
 b = b / 2
 expt = expt + 1
 while a != b:
 if a is even: a = a / 2
 elif b is even: b = b / 2
 elif a > b: a = (a - b) / 2
 else: b = (b - a) / 2
 return a * 2^expt

First question: does this
program ever divide by zero?
Take a moment and discuss.

Next question: does this
program terminate on all
inputs? Take a moment and
discuss. (Hint: draw a CFG.)

Another example: Stein’s algorithm

def gcd(int a, int b):
 if a == 0 or b == 0:
 return 0
 int expt = 0
 while a is even and b is even:
 a = a / 2
 b = b / 2
 expt = expt + 1
 while a != b:
 if a is even: a = a / 2
 elif b is even: b = b / 2
 elif a > b: a = (a - b) / 2
 else: b = (b - a) / 2
 return a * 2^expt

First question: does this
program ever divide by zero?
Take a moment and discuss.

Next question: does this
program terminate on all
inputs? Take a moment and
discuss. (Hint: draw a CFG.)

To prove termination, we need
to show that both while loop
guards are eventually false.

Another example: Stein’s algorithm

def gcd(int a, int b):
 if a == 0 or b == 0:
 return 0
 int expt = 0
 while a is even and b is even:
 a = a / 2
 b = b / 2
 expt = expt + 1
 while a != b:
 if a is even: a = a / 2
 elif b is even: b = b / 2
 elif a > b: a = (a - b) / 2
 else: b = (b - a) / 2
 return a * 2^expt

First question: does this
program ever divide by zero?
Take a moment and discuss.

Next question: does this
program terminate on all
inputs? Take a moment and
discuss. (Hint: draw a CFG.)

To prove termination, we need
to show that both while loop
guards are eventually false.
● 1st: a is odd or b is odd

Another example: Stein’s algorithm

def gcd(int a, int b):
 if a == 0 or b == 0:
 return 0
 int expt = 0
 while a is even and b is even:
 a = a / 2
 b = b / 2
 expt = expt + 1
 while a != b:
 if a is even: a = a / 2
 elif b is even: b = b / 2
 elif a > b: a = (a - b) / 2
 else: b = (b - a) / 2
 return a * 2^expt

First question: does this
program ever divide by zero?
Take a moment and discuss.

Next question: does this
program terminate on all
inputs? Take a moment and
discuss. (Hint: draw a CFG.)

To prove termination, we need
to show that both while loop
guards are eventually false.
● 1st: a is odd or b is odd
● 2nd: a eventually equals b

Another example: Stein’s algorithm: parity

def gcd(int a, int b):
 if a == 0 or b == 0:
 return 0
 int expt = 0
 while a is even and b is even:
 a = a / 2
 b = b / 2
 expt = expt + 1
 while a != b:
 if a is even: a = a / 2
 elif b is even: b = b / 2
 elif a > b: a = (a - b) / 2
 else: b = (b - a) / 2
 return a * 2^expt

Fortunately, we already know an
analysis for parity. Let’s use it (on
the board; requires a CFG).

Another example: Stein’s algorithm: parity

def gcd(int a, int b):
 if a == 0 or b == 0:
 return 0
 int expt = 0
 while a is even and b is even:
 a = a / 2
 b = b / 2
 expt = expt + 1
 while a != b:
 if a is even: a = a / 2
 elif b is even: b = b / 2
 elif a > b: a = (a - b) / 2
 else: b = (b - a) / 2
 return a * 2^expt

Fortunately, we already know an
analysis for parity. Let’s use it (on
the board; requires a CFG).
● we ran into a problem: we

can’t prove that a and b are
eventually odd!
○ the transfer function for

even / is2 returns T

Another example: Stein’s algorithm: parity

def gcd(int a, int b):
 if a == 0 or b == 0:
 return 0
 int expt = 0
 while a is even and b is even:
 a = a / 2
 b = b / 2
 expt = expt + 1
 while a != b:
 if a is even: a = a / 2
 elif b is even: b = b / 2
 elif a > b: a = (a - b) / 2
 else: b = (b - a) / 2
 return a * 2^expt

Fortunately, we already know an
analysis for parity. Let’s use it (on
the board; requires a CFG).
● we ran into a problem: we

can’t prove that a and b are
eventually odd!
○ the transfer function for

even / is2 returns T
● in this case, that’s actually

correct!
○ the program does not

terminate on all inputs
○ -1, 1 is a counterexample

Course Announcements

● PA2 due today!
● PA3c1 (codegen testing) is due on Friday

○ all gas, no brakes
● My OH on Wednesday will be later than usual (4-5 instead of

3:30-4:30), because of a CS faculty meeting until 4
○ might even start a little bit later…

