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An abstract interpretation formally has two components:

e an abstract domain over which to reason, which is composed of:
o asetof abstract values
o anordering operation (e.g., LUB)
o together these forma

e asetof transfer functions that tell the abstract interpreter how

to reason over that abstract domain
o one for each kind of operation in the underlying
programming language (e.g., one for +, one for -, etc.)

o usually represented as tables
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Review: clarifications

e last week, | went through an extended example of how to get a
parity analysis to work on one program
o however, that was just an example!
m an abstract interpretation is applicable to any program
o one of the key challenges in abstract interpretation design is
figuring out the to handle precisely
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Control Flow Graphs

Definition: a control flow graph (or CFG) is a representation, using
graph notation, of all paths that might be traversed through a program
during its execution

e thisistheinternal representation used by most static analysis

tools
e nodesinthe CFG are basic blocks
o abasicblock is a sequence of instructions that always execute

together
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X <- 0 ;

while x <= 6 loop
X <- X + 1

pool ;

X <= X + 2 ;

out_int(x)

X <ot ] [ out_int(x);]

exit
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e |'veclaimed several times that it is possible to use abstract
interpretation to produce sound program analyses
o thatis, analyses without false negatives

e Thekeyideatodemonstrate that an abstract interpretation is
sound is the galois connection between a concrete value and the

concretization of its abstractio
o ideally, wed like V x, y(a(x)] And, it's also necessary to show

o but this is too strong: apprd that the Galois connection holds
information! So, the standal for the transfer functions!

m VXX € y(a(x))
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e how would we actually show that a particular abstract
interpretation is sound?
e here’s an algorithm for doing so:
o for each transfer function Top for some operation op:
m prove that for all concrete states c:

op(c) § V(T (a(c))
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the transfer function to the abstraction of
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e let’s carry out an example proof using this technique ourselves on
the plus transfer function from our simple parity analysis
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o if the transfer function entry is top, then it’s easy:
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e Let’s first dispense with the easy cases:
o if the transfer function entry is top, then it’s easy:

V c.op(c) < {all integers }is trivially true!

o if the transfer function entry is bottom, it’s still pretty easy:

for every entry in our transfer function that’s bottom, one
of the inputs is also bottom

op({}) is always the empty set (it can’t be executed)

Usy
QED
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Refinement

Consider the following program:

x = 0

while (x < 3):
X = x + 1

print x

What value is printed?
How do you know?

Insight: anything you can figure
out by reasoning through the
program by hand, an abstract
interpretation can do too!
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Refinement

e We need a transfer function for branching

o when we exit the while loop, we know the loop guard is false
e These transfer functions are called refinements because they

typically involve a greatest lower bound

o arefinement rules out some possible states
e Refinements are defined over the of the

language

o for our example, we need a refinement for >=

o why>=andnot<?

m loopguard is false, so we invert the operator



Refinement

Consider the following program:

x = 0

while (x < 3):
X = x + 1

print x

(on the whiteboard. Start by drawing a CFG, then execute the algorithm. Put the CFG to the side and don’t erase it.)
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Widening

e What if we want to build a bigger constant propagation lattice?

O

the previous example only worked because we knew that we

only needed at most 4 values at a time

in the real world, we don’t know we'll need

for any given program!

it would be nice if we could have sets of arbitrary size

m and we shouldn’t need to reimplement our analysis each
time we need to reason about differently-sized sets

do you think that’s possible?

m Wecanuse to allow this (sort of)
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Widening

Definition: a widening operator is a predefined policy to take a
particular upper bound if the abstract value at a particular location
has changed too many times

e effectively, this guarantees termination by the number
of times that a particular value can change, even if the lattice is of
infinite size

e thisissafe because the analysis isn’'t required to take the least
upper bound so long as it chooses an upper bound

e example widening operator for constant propagation:
o if an abstract value has changed at least five times, go to top
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Let’s return to the previous example:

x = 0

while (x < 3 10):
X = x + 1

print x
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Widening

e The main advantage of widening is that it permits lattices with
infinite height

e Thedownside is that itintroduces additional
o but abstract interpretation was always imprecise, so that’s
okay
e A nice fact about implementing an abstract interpretation is that
it is always safe to apply a widening operator
o this means it’s easy to support complex language features: just
immediately widen any values that they impact
m “gototop’isasound policyin all situations



Agenda: abstract interpretation, part 2

review and clarifications from last week
soundness

refinement and branching

widening

Stein’s algorithm example
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def gcd(int a, int b):
if a == 0 or b ==
return O
int expt = 0

while a 1s even and b 1s even:

a=a/ 2
b =Db/ 2
expt = expt + 1

while a != b:
if a is even: =a/
elif b is even: b = Db
elif a > b: a = (a

else: b = (b - a) / 2
return a * 2%expt

~NDN

b

~—

2
/ 2

First question: does this
program ever divide by zero?

kTake a moment and discuss.

~

Answer: definitely not!

e alldivisions are by 2
o 2!=0

e ‘constant propagation”
can prove no divisions by
zero!
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return O
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def gcd(

int a, int Db):

if a == 0 or b ==

retu
int ex
while
a =
b =
expt
while
if a
elif
elif

else:

return

rn O
pt = 0

a 1s even and b 1s even:

a / 2
b / 2
= expt + 1
a !'= b:
is even: a =
b is even: b
a > b: a = (a
b = (b - a)
a * 27expt

a

/

/

b

- b
2

2
/ 2
) /2

Fortunately, we already know an
analysis for parity. Let’s use it (on
the board; requires a CFG).

e weranintoaproblem:we
can't prove thataand b are
eventually odd!

o thetransfer function for
even/is2returnsT

e inthiscase, that’s actually
correct!

o the program does not
terminate on all inputs
o -1, 1isacounterexample



Course Announcements

e PA2duetoday!

e PA3c1 (codegen testing) is due on Friday
o all gas, no brakes

e My OH on Wednesday will be later than usual (4-5 instead of
3:30-4:30), because of a CS faculty meeting until 4
o might even start a little bit later...



