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What is an abstract interpretation (formally)?
An abstract interpretation formally has two components:
● an abstract domain over which to reason
● a set of transfer functions that tell the abstract interpreter how 

to reason over that abstract domain

A concrete interpreter for a real programming language (e.g., 
CPython, Node.js) also has these two components:
● the “domain” is the concrete values that the machine can 

represent, like “64-bit integers”
● the “transfer functions” are the concrete semantics of the 

programming language, such as what “+” actually means 
(“dispatch the operators to the ALU”)

When dealing with a 
concrete language, we 
don’t usually get to choose 
the domain or the 
semantics. But in abstract 
interpretation, we do!
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Domains

Definition: a domain is a set of possible values
● e.g., you might have heard the terms “domain” and “range” applied 

to functions in your “10th grade” math classes
● we are interested in two kinds of domains:

○ the concrete domain of a variable is the set of values that the 
variable might actually take on during execution
■ probably familiar to you already
■ this is what the computer computes

○ an abstract domain is a layer of indirection on top of the 
concrete domain that splits the concrete domain into a 
smaller number of sets
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Domains: concrete vs abstract example

● concrete domain = natural numbers: 
○ { 0, 1, 2, 3, 4, … }

● abstract domains:
○ even/odd
○ prime/composite
○ positive/nonnegative
○ many more!

Important property of an 
abstract domain: it must 
completely cover the 
concrete domain
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● More formally:
○ let C be the concrete domain of interest (e.g., natural numbers)
○ an abstract domain A = {A1, A2, …, An} is a set of subsets of C that 

fulfills the following properties:
■ ∀ Ai ∈ A, Ai ⊆ C
■ A1 ∪ A2 ∪ … ∪ An = C

○ each Ai represents an abstract value
■ e.g., “odd integers”, “Strings that match my regular 

expression”, etc.
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Domains: orderings and lattices

● An abstract domain is incomplete without an ordering: that is, a 
way to tell how the abstract values are related to each other
○ an abstract domain with an ordering is called a lattice

● There are two ways to express the ordering:
○ define a less than relation (usually denoted by ⊏), or
○ define a least upper bound operator (usually denoted by ⊔)

● These two approaches are equivalent: you can derive the LUB 
from the less than relation and vice-versa
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● Review: informally, a relation on a set may, or may not, hold 
between two given members of the set
○ formally, we define a relation as a set of ordered pairs

● If x ⊏ y, then we say that x is lower or less, and that y is higher or 
greater

● The less-than relation need not be total
○ for two points e1 and e2, it is possible that neither e1 ⊏ e2 nor 

e2 ⊏ e1 is true
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Domains: ordering: least upper bound

● While the less than relation is in some ways better for doing a 
proof, it can be unwieldy when thinking about programs

● The least upper bound is often more useful, because it directly 
models the join operator
○ that is, it models what happens when two possible abstract 

values flow to the same location (e.g., the then and else 
branches of an if)
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Least upper bound: relationship to types

● You are already familiar with 
the LUB operator from our 
discussion of type systems and 
your experience with 
object-oriented programming
○ any time that you’ve 

answered the question 
“what is the closest 
supertype that these two 
types share”, you’re doing a 
LUB

         Object
                       /                 \   
          Animal                 Shape
        /            |                          |       \
Bird       Mammal      Circle  Rect
                /       \                                 |
        Dog       Cat                    Square



Domains: ordering: least upper bound

● There are two important requirements on the LUB operator:



Domains: ordering: least upper bound

● There are two important requirements on the LUB operator:
○ it must be complete: that is, ∀ X, Y ∈ A . X ⊔ Y must be defined



Domains: ordering: least upper bound

● There are two important requirements on the LUB operator:
○ it must be complete: that is, ∀ X, Y ∈ A . X ⊔ Y must be defined
○ it must be monotonic: that is, it preserves the ordering 

relationship. 



Domains: ordering: least upper bound

● There are two important requirements on the LUB operator:
○ it must be complete: that is, ∀ X, Y ∈ A . X ⊔ Y must be defined
○ it must be monotonic: that is, it preserves the ordering 

relationship. 
■ LUB is a binary function; for a binary function f, 

monotonicity is defined as 
● ∀ a, b, c, d . a ⊑ b ∧ c ⊑ d ⇒ f(a, c) ⊑ f(b,d)



Domains: ordering: least upper bound

● There are two important requirements on the LUB operator:
○ it must be complete: that is, ∀ X, Y ∈ A . X ⊔ Y must be defined
○ it must be monotonic: that is, it preserves the ordering 

relationship. 
■ LUB is a binary function; for a binary function f, 

monotonicity is defined as 
● ∀ a, b, c, d . a ⊑ b ∧ c ⊑ d ⇒ f(a, c) ⊑ f(b,d)

■ Note that this is not the same as:
● ∀ x, y . f(x, y) ⊒ x ∧ f(x, y) ⊒ y!
● though this property is also true of the LUB operator
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● There are two important requirements on the LUB operator:
○ it must be complete: that is, ∀ X, Y ∈ A . X ⊔ Y must be defined
○ it must be monotonic: that is, it preserves the ordering 

relationship. 
■ LUB is a binary function; for a binary function f, 

monotonicity is defined as 
● ∀ a, b, c, d . a ⊑ b ∧ c ⊑ d ⇒ f(a, c) ⊑ f(b,d)

■ Note that this is not the same as:
● ∀ x, y . f(x, y) ⊒ x ∧ f(x, y) ⊒ y!
● though this property is also true of the LUB operator

Hint: I like to ask exam 
questions like “why is this 
property required?” or 
“what would happen if it 
weren’t true?”
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● A lattice formally has two components:
○ the abstract domain
○ the ordering relation

● That is, a lattice is a partially-ordered set

A set is partially ordered iff ∃ a binary 
relationship ≤ that is:
● reflexive: x ≤ x
● anti-symmetric: x ≤ y ⋀ y ≤ x => x = y
● transitive: x ≤ y ⋀ y ≤ z => x ≤ z
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● A lattice formally has two components:
○ the abstract domain
○ the ordering relation

● That is, a lattice is a partially-ordered set
○ join semilattices and meet semilattices are special kinds of 

partially-ordered sets
■ join semilattices have a unique top element
■ meet semilattices have a unique bottom element

Meet semilattice 
example:

A     B
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C     D
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● A lattice formally has two components:
○ the abstract domain
○ the ordering relation

● That is, a lattice is a partially-ordered set
○ join semilattices and meet semilattices are special kinds of 

partially-ordered sets
■ join semilattices have a unique top element
■ meet semilattices have a unique bottom element

○ a lattice formally is both a join and a meet semilattice
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Example AI: even/odd integers

Example lattice:

{ even, odd } = top
          /                \
  {even}         {odd}
          \                 /
          {} = bottom

A note about top:
● top represents no 

constraints on the 
possible values

● equivalently, every value 
is a member of top

Similarly for bottom:
● bottom represents all 

possible constraints at 
once on values

● equivalently, no values 
are members of bottom



Example AI: even/odd integers

Example lattice:

{ even, odd } = top
          /                \
  {even}         {odd}
          \                 /
          {} = bottom

Example transfer function:

+ T even odd 丄

T

even

odd

丄



Example AI: even/odd integers

Example lattice:

{ even, odd } = top
          /                \
  {even}         {odd}
          \                 /
          {} = bottom

Example transfer function:

+ T even odd 丄

T T T T 丄

even T even odd 丄

odd T odd even 丄

丄 丄 丄 丄 丄
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Abstraction function

● How did we know that 0 was even?
○ an abstraction function (typically denoted by α) tells us which 

abstract domain a particular concrete element belongs to

concrete 
domain

abstract 
domain

e.g.:
α(4) = even
α({}) = bottom
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● What about going the other way?
○ an concretization function (typically denoted by γ) tells us which  

concrete elements are associated with an abstract value

concrete 
domain

abstract 
domain
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execution

Abstract state Abstract state

abstraction 
function

concretization 
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transfer 
functions
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Example AI: even/odd integers

What’s the transfer function for division?

↓/→ T even odd 丄

T T T T 丄

even T T T 丄

odd T T T 丄

丄 丄 丄 丄 丄

Notes for online readers:
● even/even is top:

○ 6/2 = 3
○ 8/2 = 4

● odd/odd is top:
○ 5/5 = 1
○ 11/5 = 2

■ integer division!
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Example AI: even/odd integers

Let’s apply this AI to an example:

x = 0;
y = read_even();
x = y + 1;
y = 2 * x;
x = y - 2;
y = x / 2;

Concrete execution
{x=0;  y=undef}
{x=0;  y=8}
{x=9;  y=8}
{x=9;  y=18}
{x=16; y=18}
{x=16; y=8} 

Abstract interpr.
{x=e;  y=⊥}
{x=e;  y=e}
{x=o;  y=e}
{x=o;  y=e}
{x=e;  y=e}
{x=e;  y=T} 

but for y, it was not
for x, our abstraction was precise
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Approximation!

Concrete state Concrete state

concrete 
execution

Abstract state Abstract state

abstraction 
function

concretization 
function

transfer 
functions

Do the green and orange paths always lead to the same concrete state?

We’ll come back to this 
question when we 
discuss soundness



Trivia Break: Building Materials

This material was in widespread use by 150 BCE; some scholars 
believe that it was developed at least a century earlier. Its 
widespread use enabled the construction of a number of 
architecturally-innovative buildings, including the Pantheon’s dome 
(built 113-125 CE), which is still the largest unreinforced dome of 
this material in the world. Unlike its modern equivalent, it was laid 
rather than poured. Incorporation of different types of lime enabled 
this material to “self-repair” cracks, contributing to its longevity.



Trivia Break: Computer Science
This family of multi-tasking, multi-user computer operating systems is 

distinguished from its predecessors by being the first “portable” 

operating system (i.e., it could run on more than one model of computer). 

Development of its first version began in 1969. It is characterized by an 

eponymous design philosophy that argues that an operating system 

should provide a set of simple tools, each of which performs a limited, 

well-defined function; and that larger programs should be built by 

composing these tools.

Name the family of operating systems and the place where the first 

version of this operating system was created.



Alternative example AI: even/odd integers

Is there an alternative AI that we can use to conclude that y is even 
after we analyze the example?

x = 0;
y = read_even();
x = y + 1;
y = 2 * x;
x = y - 2;
y = x / 2;



Alternative example AI: even/odd integers

Is there an alternative AI that we can use to conclude that y is even 
after we analyze the example?

x = 0;
y = read_even();
x = y + 1;
y = 2 * x;
x = y - 2;
y = x / 2;

In-class exercise: with a 
partner, design an alternative 
abstract interpretation that 
can conclude that y is even.
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Alternative example AI: even/odd integers

Key property that we need to conclude is that x / 2 is even.
● ask yourself: “for what x is that true?”

○ simplest answer: x.x%4 = 0 - that is, all xs such that x is 
divisible by 4

○ alternative answer: abstract value tracks the number of 2s in 
the prime factorization

● cunning plan: add a “divisible by 4” abstract value (mod4) to our 
lattice, then rebuild our transfer functions
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Alternative example AI: even/odd integers

Next question: where does “divisible by 4” go in the lattice?

{ even, odd } = top
          /                \
  {even}         {odd}
         |                   |
 {mod4}            |
         \                 /
          {} = bottom

all mod4 integers 
are also even!
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Alternative example AI: even/odd integers

How to change our transfer functions? Let’s do two examples (+ and /):

+ T even odd mod4 丄

T T T T T 丄

even T even odd even 丄

odd T odd even odd 丄

mod4 T even odd mod4 丄

丄 丄 丄 丄 丄 丄

recall our original 
transfer function for +:

we need to add a row 
and a column for mod4:
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↓/→ T even odd mod4 丄

T T T T 丄
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Alternative example AI: even/odd integers

How to change our transfer functions? Let’s do two examples (+ and /):

↓/→ T even odd mod4 丄

T T T T T 丄

even T T T T 丄

odd T T T T 丄

mod4 T T T T 丄

丄 丄 丄 丄 丄 丄

same thing for division:

oh no! why is mod4 
divided by even top?
● 4/4 = 1 :(
● we need another 

lattice element to 
make this work!
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Another lattice element: “is2”
● sibling of mod4 in the lattice
● its only purpose is to be 

treated specially in the 
division transfer function

      { even, odd } = top
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        /          \             |
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Alternative example AI: even/odd integers

Another lattice element: “is2”
● sibling of mod4 in the lattice
● its only purpose is to be 

treated specially in the 
division transfer function
○ in particular, we add the 

rule “mod4 / is2 -> even”
○ full transfer functions left 

as an exercise

      { even, odd } = top
               /                \
      {even}         {odd}
        /          \             |
{mod4}  {is2}       |
           \          |         /
           {} = bottom
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x = y + 1;
y = 2 * x;
x = y - 2;
y = x / 2;
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Alternative example AI: let’s try it

x = 0;
y = read_even();
x = y + 1;
y = 2 * x;
x = y - 2;
y = x / 2;

Abstract interpr.
{x=e;    y=⊥}
{x=e;    y=e}
{x=o;    y=e}
{x=o;    y=e}
{x=?;    y=?}
{x=?;    y=?} 

what should the transfer function for even - is2 be?
● even! why not mod4? counterexample: 8 - 2 = 6



Alternative example AI: let’s try it

x = 0;
y = read_even();
x = y + 1;
y = 2 * x;
x = y - 2;
y = x / 2;

Abstract interpr.
{x=e;    y=⊥}
{x=e;    y=e}
{x=o;    y=e}
{x=o;    y=e}
{x=e;    y=e}
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Alternative example AI: let’s try it

x = 0;
y = read_even();
x = y + 1;
y = 2 * x;
x = y - 2;
y = x / 2;

Abstract interpr.
{x=e;    y=⊥}
{x=e;    y=e}
{x=o;    y=e}
{x=o;    y=e}
{x=e;    y=e}
{x=e;    y=T}
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Alternative example AI: even/odd integers

● Why did adding is2 and mod4 fail to fix the approximation problem 
in the example?
○ the example relies on the fact that for all X, (X + 1) * 2 - 2 = 2X

■ and if X is initially even, then this means that the result is 
divisible by 4

● lesson from this example: most programs rely on complex 
invariants, and designing an abstract domain that can capture 
those invariants is hard!

● how could we get the right answer on this example?
○ more complex abstract values, e.g., oddTimes2?
○ store the mathematical expression for each variable?

one more 
try…



Alternative example AI: even/odd integers

Yet another lattice element: “odd2”
      { even, odd } = top
               /                \
      {even}         {odd}
        /          \             |
{mod4}  {is2}       |
           \          |         /
           {} = bottom



Alternative example AI: even/odd integers

Yet another lattice element: “odd2”
● produced by multiplying an odd 

number by 2 (i.e., transfer fcn 
for odd * is2 -> odd2)
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               /                \
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Alternative example AI: even/odd integers

Yet another lattice element: “odd2”
● produced by multiplying an odd 

number by 2 (i.e., transfer fcn 
for odd * is2 -> odd2)

● where does it go in the lattice?

      { even, odd } = top
               /                \
      {even}         {odd}
        /          \             |
{mod4}  {is2}       |
           \          |         /
           {} = bottom



Alternative example AI: even/odd integers

Yet another lattice element: “odd2”
● produced by multiplying an odd 

number by 2 (i.e., transfer fcn 
for odd * is2 -> odd2)

● where does it go in the lattice?
○ a sibling of is2 and mod4?

                 { even, odd } = top
                         /                       \
                {even}                   {odd}
           /         |         \                   |
{mod4}  {is2}   {odd2}        |
                \         \         |            /
                         {} = bottom



Alternative example AI: even/odd integers

Yet another lattice element: “odd2”
● produced by multiplying an odd 

number by 2 (i.e., transfer fcn 
for odd * is2 -> odd2)

● where does it go in the lattice?
○ a sibling of is2 and mod4?
○ between even and is2!

                 { even, odd } = top
                         /                       \
                {even}                   {odd}
              /           \                      |
{mod4}    {odd2}               /
             |              |                 /
              \        {is2}           /  

\         |            /
                   {} = bottom



Alternative example AI: even/odd integers

Yet another lattice element: “odd2”
● produced by multiplying an odd 

number by 2 (i.e., transfer fcn 
for odd * is2 -> odd2)

● where does it go in the lattice?
○ a sibling of is2 and mod4?
○ between even and is2!
○ now we can add a new rule:

                 { even, odd } = top
                         /                       \
                {even}                   {odd}
              /           \                      |
{mod4}    {odd2}               /
             |              |                 /
              \        {is2}           /  

\         |            /
                   {} = bottom



Alternative example AI: even/odd integers

Yet another lattice element: “odd2”
● produced by multiplying an odd 

number by 2 (i.e., transfer fcn 
for odd * is2 -> odd2)

● where does it go in the lattice?
○ a sibling of is2 and mod4?
○ between even and is2!
○ now we can add a new rule:

■ odd2 - is2 -> mod4

                 { even, odd } = top
                         /                       \
                {even}                   {odd}
              /           \                      |
{mod4}    {odd2}               /
             |              |                 /
              \        {is2}           /  

\         |            /
                   {} = bottom



Alternative example AI: another attempt

x = 0;
y = read_even();
x = y + 1;
y = 2 * x;
x = y - 2;
y = x / 2;

Abstract interpr.
{x=?;    y=?}
{x=?;    y=?}
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Alternative example AI: another attempt

x = 0;
y = read_even();
x = y + 1;
y = 2 * x;
x = y - 2;
y = x / 2;

Abstract interpr.
{x=e;    y=⊥}
{x=e;    y=e}
{x=o;    y=e}
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Alternative example AI: another attempt

x = 0;
y = read_even();
x = y + 1;
y = 2 * x;
x = y - 2;
y = x / 2;

Abstract interpr.
{x=e;    y=⊥}
{x=e;    y=e}
{x=o;    y=e}
{x=o;    y=odd2}
{x=mod4; y=odd2}
{x=mod4; y=e} 

Success!
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a. if the item is a basic block, abstractly execute it using the 
transfer functions (and abstraction function, if applicable)

b. if the item is a join point, use the LUB to combine its inputs

Using LUB at join points 
models the fact that the 
program may take either 
branch of an if statement.



Formalizing the AI algorithm

The core algorithm for abstract interpretation is the following:
1. convert the program to a CFG
2. start with an initial estimate at every program point (usually ⊥)
3. put each program point in a worklist
4. until the worklist is empty, choose an item from the worklist and:

a. if the item is a basic block, abstractly execute it using the 
transfer functions (and abstraction function, if applicable)

b. if the item is a join point, use the LUB to combine its inputs
c. if either a. or b. caused a change, re-add dependent blocks to 

the worklist
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● this algorithm terminates, even if the program contains loops that 
might run forever, because:
○ the lattice is of finite size
○ LUB is monotonic You may be surprised that it is 

possible to build an abstract 
interpretation using (some) 
infinite-height lattices. Next 
week, we’ll discuss widening, 
which is the technique for this.
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What about loops?

● this algorithm terminates, even if the program contains loops that 
might run forever, because:
○ the lattice is of finite size
○ LUB is monotonic

● that is, each loop will be analyzed at most k-1 times for each 
variable in the loop, where k is the height of the lattice

● otherwise, loops are just a join point and a back-edge in the CFG
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Why start with bottom?

● the abstract interpretations we’ve considered so far are 
optimistic: they start with ⊥ and then go upwards in the lattice
○ these algorithms get the most precise answer
○ but their downside is that they must run to fixpoint - they 

cannot be stopped early (the result might still be unsound)!
● pessimistic algorithms are also possible

○ start with T everywhere and move downwards in the lattice
○ can be stopped at any time (e.g., when a budget is reached), but 

answer may not be precise
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● Consider an abstract interpretation for constant propagation
○ the goal of constant propagation is to determine whether, for 

each variable, its value can be known at compile time
○ constant propagation is a standard compiler optimization
○ lattice:

       top

… -2 -1 0 1 2 …

   bottom



Another example

Consider the following program:

w = 5
x = read()
if (x is even)
  y = 5
  w = w + y
else
  y = 10
  w = y
z = y + 1
x = 2 * w

(on the whiteboard)
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Correctness of Abstract Interpretation

● I’ve claimed several times that it is possible to use abstract 
interpretation to produce sound program analyses
○ that is, analyses without false negatives

● The key idea to demonstrate that an abstract interpretation is 
sound is the galois connection between a concrete value and the 
concretization of its abstraction function
○ ideally, we’d like ∀ x, γ(α(x)) = x
○ but this is too strong: approximation may cause us to lose 

information! So, the standard formalism is:
■ ∀ x, x ∈ γ(α(x))

And, it’s also necessary to show 
that the Galois connection holds 
for the transfer functions!
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Remember this 
diagram from earlier?Approximation!

Concrete state Concrete state

concrete 
execution

Abstract state Abstract state

abstraction 
function

concretization 
function

transfer 
functions

Do the green and orange paths always lead to the same concrete state?

What we need to show 
is that for all transfer 
functions, the green 
path is a subset of the 
orange path



Course Announcements

● PA2 (full) is due next Monday (one week from today!)


