
Abstract Interpretation (1/2)
Martin Kellogg

Agenda: abstract interpretation

● Today: definitions, examples, soundness (?)
● Next class: more theory and examples

Agenda: abstract interpretation

● Today: definitions, examples, soundness
● Next class: more theory and examples

What is an abstract interpretation (formally)?

What is an abstract interpretation (formally)?
An abstract interpretation formally has two components:

What is an abstract interpretation (formally)?
An abstract interpretation formally has two components:
● an abstract domain over which to reason

What is an abstract interpretation (formally)?
An abstract interpretation formally has two components:
● an abstract domain over which to reason
● a set of transfer functions that tell the abstract interpreter how

to reason over that abstract domain

What is an abstract interpretation (formally)?
An abstract interpretation formally has two components:
● an abstract domain over which to reason
● a set of transfer functions that tell the abstract interpreter how

to reason over that abstract domain

A concrete interpreter for a real programming language (e.g.,
CPython, Node.js) also has these two components:

What is an abstract interpretation (formally)?
An abstract interpretation formally has two components:
● an abstract domain over which to reason
● a set of transfer functions that tell the abstract interpreter how

to reason over that abstract domain

A concrete interpreter for a real programming language (e.g.,
CPython, Node.js) also has these two components:
● the “domain” is the concrete values that the machine can

represent, like “64-bit integers”

What is an abstract interpretation (formally)?
An abstract interpretation formally has two components:
● an abstract domain over which to reason
● a set of transfer functions that tell the abstract interpreter how

to reason over that abstract domain

A concrete interpreter for a real programming language (e.g.,
CPython, Node.js) also has these two components:
● the “domain” is the concrete values that the machine can

represent, like “64-bit integers”
● the “transfer functions” are the concrete semantics of the

programming language, such as what “+” actually means
(“dispatch the operators to the ALU”)

What is an abstract interpretation (formally)?
An abstract interpretation formally has two components:
● an abstract domain over which to reason
● a set of transfer functions that tell the abstract interpreter how

to reason over that abstract domain

A concrete interpreter for a real programming language (e.g.,
CPython, Node.js) also has these two components:
● the “domain” is the concrete values that the machine can

represent, like “64-bit integers”
● the “transfer functions” are the concrete semantics of the

programming language, such as what “+” actually means
(“dispatch the operators to the ALU”)

When dealing with a
concrete language, we
don’t usually get to choose
the domain or the
semantics. But in abstract
interpretation, we do!

Domains

Definition: a domain is a set of possible values

Domains

Definition: a domain is a set of possible values
● e.g., you might have heard the terms “domain” and “range” applied

to functions in your “10th grade” math classes

Domains

Definition: a domain is a set of possible values
● e.g., you might have heard the terms “domain” and “range” applied

to functions in your “10th grade” math classes
● we are interested in two kinds of domains:

Domains

Definition: a domain is a set of possible values
● e.g., you might have heard the terms “domain” and “range” applied

to functions in your “10th grade” math classes
● we are interested in two kinds of domains:

○ the concrete domain of a variable is the set of values that the
variable might actually take on during execution
■ probably familiar to you already
■ this is what the computer computes

Domains

Definition: a domain is a set of possible values
● e.g., you might have heard the terms “domain” and “range” applied

to functions in your “10th grade” math classes
● we are interested in two kinds of domains:

○ the concrete domain of a variable is the set of values that the
variable might actually take on during execution
■ probably familiar to you already
■ this is what the computer computes

○ an abstract domain is a layer of indirection on top of the
concrete domain that splits the concrete domain into a
smaller number of sets

Domains: concrete vs abstract example

Domains: concrete vs abstract example

● concrete domain = natural numbers:

Domains: concrete vs abstract example

● concrete domain = natural numbers:
○ { 0, 1, 2, 3, 4, … }

Domains: concrete vs abstract example

● concrete domain = natural numbers:
○ { 0, 1, 2, 3, 4, … }

● abstract domains:

Domains: concrete vs abstract example

● concrete domain = natural numbers:
○ { 0, 1, 2, 3, 4, … }

● abstract domains:
○ even/odd
○ prime/composite
○ positive/nonnegative
○ many more!

Domains: concrete vs abstract example

● concrete domain = natural numbers:
○ { 0, 1, 2, 3, 4, … }

● abstract domains:
○ even/odd
○ prime/composite
○ positive/nonnegative
○ many more!

Important property of an
abstract domain: it must
completely cover the
concrete domain

Domains: concrete vs abstract

● More formally:

Domains: concrete vs abstract

● More formally:
○ let C be the concrete domain of interest (e.g., natural numbers)

Domains: concrete vs abstract

● More formally:
○ let C be the concrete domain of interest (e.g., natural numbers)
○ an abstract domain A = {A1, A2, …, An} is a set of subsets of C that

fulfills the following properties:

Domains: concrete vs abstract

● More formally:
○ let C be the concrete domain of interest (e.g., natural numbers)
○ an abstract domain A = {A1, A2, …, An} is a set of subsets of C that

fulfills the following properties:
■ ∀ Ai ∈ A, Ai ⊆ C

Domains: concrete vs abstract

● More formally:
○ let C be the concrete domain of interest (e.g., natural numbers)
○ an abstract domain A = {A1, A2, …, An} is a set of subsets of C that

fulfills the following properties:
■ ∀ Ai ∈ A, Ai ⊆ C
■ A1 ∪ A2 ∪ … ∪ An = C

Domains: concrete vs abstract

● More formally:
○ let C be the concrete domain of interest (e.g., natural numbers)
○ an abstract domain A = {A1, A2, …, An} is a set of subsets of C that

fulfills the following properties:
■ ∀ Ai ∈ A, Ai ⊆ C
■ A1 ∪ A2 ∪ … ∪ An = C

○ each Ai represents an abstract value

Domains: concrete vs abstract

● More formally:
○ let C be the concrete domain of interest (e.g., natural numbers)
○ an abstract domain A = {A1, A2, …, An} is a set of subsets of C that

fulfills the following properties:
■ ∀ Ai ∈ A, Ai ⊆ C
■ A1 ∪ A2 ∪ … ∪ An = C

○ each Ai represents an abstract value
■ e.g., “odd integers”, “Strings that match my regular

expression”, etc.

Domains: orderings and lattices

● An abstract domain is incomplete without an ordering: that is, a
way to tell how the abstract values are related to each other
○ an abstract domain with an ordering is called a lattice

Domains: orderings and lattices

● An abstract domain is incomplete without an ordering: that is, a
way to tell how the abstract values are related to each other
○ an abstract domain with an ordering is called a lattice

● There are two ways to express the ordering:

Domains: orderings and lattices

● An abstract domain is incomplete without an ordering: that is, a
way to tell how the abstract values are related to each other
○ an abstract domain with an ordering is called a lattice

● There are two ways to express the ordering:
○ define a less than relation (usually denoted by ⊏), or

Domains: orderings and lattices

● An abstract domain is incomplete without an ordering: that is, a
way to tell how the abstract values are related to each other
○ an abstract domain with an ordering is called a lattice

● There are two ways to express the ordering:
○ define a less than relation (usually denoted by ⊏), or
○ define a least upper bound operator (usually denoted by ⊔)

Domains: orderings and lattices

● An abstract domain is incomplete without an ordering: that is, a
way to tell how the abstract values are related to each other
○ an abstract domain with an ordering is called a lattice

● There are two ways to express the ordering:
○ define a less than relation (usually denoted by ⊏), or
○ define a least upper bound operator (usually denoted by ⊔)

● These two approaches are equivalent: you can derive the LUB
from the less than relation and vice-versa

Domains: ordering: less than relation

● Review: informally, a relation on a set may, or may not, hold
between two given members of the set

Domains: ordering: less than relation

● Review: informally, a relation on a set may, or may not, hold
between two given members of the set
○ formally, we define a relation as a set of ordered pairs

Domains: ordering: less than relation

● Review: informally, a relation on a set may, or may not, hold
between two given members of the set
○ formally, we define a relation as a set of ordered pairs

● If x ⊏ y, then we say that x is lower or less, and that y is higher or
greater

Domains: ordering: less than relation

● Review: informally, a relation on a set may, or may not, hold
between two given members of the set
○ formally, we define a relation as a set of ordered pairs

● If x ⊏ y, then we say that x is lower or less, and that y is higher or
greater

● The less-than relation need not be total
○ for two points e1 and e2, it is possible that neither e1 ⊏ e2 nor

e2 ⊏ e1 is true

Domains: ordering: least upper bound

● While the less than relation is in some ways better for doing a
proof, it can be unwieldy when thinking about programs

Domains: ordering: least upper bound

● While the less than relation is in some ways better for doing a
proof, it can be unwieldy when thinking about programs

● The least upper bound is often more useful, because it directly
models the join operator

Domains: ordering: least upper bound

● While the less than relation is in some ways better for doing a
proof, it can be unwieldy when thinking about programs

● The least upper bound is often more useful, because it directly
models the join operator
○ that is, it models what happens when two possible abstract

values flow to the same location (e.g., the then and else
branches of an if)

Least upper bound: relationship to types

● You are already familiar with
the LUB operator from our
discussion of type systems and
your experience with
object-oriented programming

Least upper bound: relationship to types

● You are already familiar with
the LUB operator from our
discussion of type systems and
your experience with
object-oriented programming

 Object
 / \
 Animal Shape
 / | | \
Bird Mammal Circle Rect
 / \ |
 Dog Cat Square

Least upper bound: relationship to types

● You are already familiar with
the LUB operator from our
discussion of type systems and
your experience with
object-oriented programming
○ any time that you’ve

answered the question
“what is the closest
supertype that these two
types share”, you’re doing a
LUB

 Object
 / \
 Animal Shape
 / | | \
Bird Mammal Circle Rect
 / \ |
 Dog Cat Square

Domains: ordering: least upper bound

● There are two important requirements on the LUB operator:

Domains: ordering: least upper bound

● There are two important requirements on the LUB operator:
○ it must be complete: that is, ∀ X, Y ∈ A . X ⊔ Y must be defined

Domains: ordering: least upper bound

● There are two important requirements on the LUB operator:
○ it must be complete: that is, ∀ X, Y ∈ A . X ⊔ Y must be defined
○ it must be monotonic: that is, it preserves the ordering

relationship.

Domains: ordering: least upper bound

● There are two important requirements on the LUB operator:
○ it must be complete: that is, ∀ X, Y ∈ A . X ⊔ Y must be defined
○ it must be monotonic: that is, it preserves the ordering

relationship.
■ LUB is a binary function; for a binary function f,

monotonicity is defined as
● ∀ a, b, c, d . a ⊑ b ∧ c ⊑ d ⇒ f(a, c) ⊑ f(b,d)

Domains: ordering: least upper bound

● There are two important requirements on the LUB operator:
○ it must be complete: that is, ∀ X, Y ∈ A . X ⊔ Y must be defined
○ it must be monotonic: that is, it preserves the ordering

relationship.
■ LUB is a binary function; for a binary function f,

monotonicity is defined as
● ∀ a, b, c, d . a ⊑ b ∧ c ⊑ d ⇒ f(a, c) ⊑ f(b,d)

■ Note that this is not the same as:
● ∀ x, y . f(x, y) ⊒ x ∧ f(x, y) ⊒ y!
● though this property is also true of the LUB operator

Domains: ordering: least upper bound

● There are two important requirements on the LUB operator:
○ it must be complete: that is, ∀ X, Y ∈ A . X ⊔ Y must be defined
○ it must be monotonic: that is, it preserves the ordering

relationship.
■ LUB is a binary function; for a binary function f,

monotonicity is defined as
● ∀ a, b, c, d . a ⊑ b ∧ c ⊑ d ⇒ f(a, c) ⊑ f(b,d)

■ Note that this is not the same as:
● ∀ x, y . f(x, y) ⊒ x ∧ f(x, y) ⊒ y!
● though this property is also true of the LUB operator

Hint: I like to ask exam
questions like “why is this
property required?” or
“what would happen if it
weren’t true?”

Domains: lattices = abstract domain + order

Domains: lattices = abstract domain + order

● A lattice formally has two components:
○ the abstract domain
○ the ordering relation

Domains: lattices = abstract domain + order

● A lattice formally has two components:
○ the abstract domain
○ the ordering relation

● That is, a lattice is a partially-ordered set

Domains: lattices = abstract domain + order

● A lattice formally has two components:
○ the abstract domain
○ the ordering relation

● That is, a lattice is a partially-ordered set

A set is partially ordered iff ∃ a binary
relationship ≤ that is:
● reflexive: x ≤ x
● anti-symmetric: x ≤ y ⋀ y ≤ x => x = y
● transitive: x ≤ y ⋀ y ≤ z => x ≤ z

Domains: lattices = abstract domain + order

● A lattice formally has two components:
○ the abstract domain
○ the ordering relation

● That is, a lattice is a partially-ordered set
○ join semilattices and meet semilattices are special kinds of

partially-ordered sets

Domains: lattices = abstract domain + order

● A lattice formally has two components:
○ the abstract domain
○ the ordering relation

● That is, a lattice is a partially-ordered set
○ join semilattices and meet semilattices are special kinds of

partially-ordered sets
■ join semilattices have a unique top element

Domains: lattices = abstract domain + order

● A lattice formally has two components:
○ the abstract domain
○ the ordering relation

● That is, a lattice is a partially-ordered set
○ join semilattices and meet semilattices are special kinds of

partially-ordered sets
■ join semilattices have a unique top element

Join semilattice
example:

T
/ \

A B
| |

C D

Domains: lattices = abstract domain + order

● A lattice formally has two components:
○ the abstract domain
○ the ordering relation

● That is, a lattice is a partially-ordered set
○ join semilattices and meet semilattices are special kinds of

partially-ordered sets
■ join semilattices have a unique top element
■ meet semilattices have a unique bottom element

Domains: lattices = abstract domain + order

● A lattice formally has two components:
○ the abstract domain
○ the ordering relation

● That is, a lattice is a partially-ordered set
○ join semilattices and meet semilattices are special kinds of

partially-ordered sets
■ join semilattices have a unique top element
■ meet semilattices have a unique bottom element

Meet semilattice
example:

A B
| |

C D
 \ /
 丄

Domains: lattices = abstract domain + order

● A lattice formally has two components:
○ the abstract domain
○ the ordering relation

● That is, a lattice is a partially-ordered set
○ join semilattices and meet semilattices are special kinds of

partially-ordered sets
■ join semilattices have a unique top element
■ meet semilattices have a unique bottom element

○ a lattice formally is both a join and a meet semilattice

AI = Lattice + Transfer functions

AI = Lattice + Transfer functions

● the goal of the transfer functions are to encode the abstract
semantics of the operations in the programming language

AI = Lattice + Transfer functions

● the goal of the transfer functions are to encode the abstract
semantics of the operations in the programming language
○ that is, the transfer function for an operation answers the

question “what does this operation mean in the context of the
abstract domain”?

AI = Lattice + Transfer functions

● the goal of the transfer functions are to encode the abstract
semantics of the operations in the programming language
○ that is, the transfer function for an operation answers the

question “what does this operation mean in the context of the
abstract domain”?

● formally, an abstract interpretation requires a transfer function for
each language construct

AI = Lattice + Transfer functions

● the goal of the transfer functions are to encode the abstract
semantics of the operations in the programming language
○ that is, the transfer function for an operation answers the

question “what does this operation mean in the context of the
abstract domain”?

● formally, an abstract interpretation requires a transfer function for
each language construct
○ in practice, though, we usually assume that most are “obvious”

and focus on the ones that might be interesting, which is what
I’ll do in the examples on the next few slides

AI = Lattice + Transfer functions

● the goal of the transfer functions are to encode the abstract
semantics of the operations in the programming language
○ that is, the transfer function for an operation answers the

question “what does this operation mean in the context of the
abstract domain”?

● formally, an abstract interpretation requires a transfer function for
each language construct
○ in practice, though, we usually assume that most are “obvious”

and focus on the ones that might be interesting, which is what
I’ll do in the examples on the next few slides

Q: Why can we assume that most
transfer functions are obvious?
A: We already know the language’s
operational semantics!

AI = Lattice + Transfer functions

● the goal of the transfer functions are to encode the abstract
semantics of the operations in the programming language
○ that is, the transfer function for an operation answers the

question “what does this operation mean in the context of the
abstract domain”?

● formally, an abstract interpretation requires a transfer function for
each language construct
○ in practice, though, we usually assume that most are “obvious”

and focus on the ones that might be interesting, which is what
I’ll do in the examples on the next few slides

Q: Why can we assume that most
transfer functions are obvious?
A: We already know the language’s
operational semantics!

Example AI: even/odd integers

Example AI: even/odd integers

Example lattice:

Example AI: even/odd integers

Example lattice:

{ even, odd } = top
 / \
 {even} {odd}
 \ /
 {} = bottom

Example AI: even/odd integers

Example lattice:

{ even, odd } = top
 / \
 {even} {odd}
 \ /
 {} = bottom

A note about top:
● top represents no

constraints on the
possible values

● equivalently, every value
is a member of top

Example AI: even/odd integers

Example lattice:

{ even, odd } = top
 / \
 {even} {odd}
 \ /
 {} = bottom

A note about top:
● top represents no

constraints on the
possible values

● equivalently, every value
is a member of top

Similarly for bottom:
● bottom represents all

possible constraints at
once on values

● equivalently, no values
are members of bottom

Example AI: even/odd integers

Example lattice:

{ even, odd } = top
 / \
 {even} {odd}
 \ /
 {} = bottom

Example transfer function:

+ T even odd 丄

T

even

odd

丄

Example AI: even/odd integers

Example lattice:

{ even, odd } = top
 / \
 {even} {odd}
 \ /
 {} = bottom

Example transfer function:

+ T even odd 丄

T T T T 丄

even T even odd 丄

odd T odd even 丄

丄 丄 丄 丄 丄

Example AI: even/odd integers

Let’s apply this AI to an example:

x = 0;
y = read_even();
x = y + 1;
y = 2 * x;
x = y - 2;
y = x / 2;

Example AI: even/odd integers

Let’s apply this AI to an example:

x = 0;
y = read_even();
x = y + 1;
y = 2 * x;
x = y - 2;
y = x / 2;

Concrete execution
{x=0; y=undef}
{x=0; y=8}
{x=9; y=8}
{x=9; y=18}
{x=16; y=18}
{x=16; y=8}

Example AI: even/odd integers

Let’s apply this AI to an example:

x = 0;
y = read_even();
x = y + 1;
y = 2 * x;
x = y - 2;
y = x / 2;

Concrete execution
{x=0; y=undef}
{x=0; y=8}
{x=9; y=8}
{x=9; y=18}
{x=16; y=18}
{x=16; y=8}

Abstract interpr.
{x=?; y=?}
{x=?; y=?}
{x=?; y=?}
{x=?; y=?}
{x=?; y=?}
{x=?; y=?}

Example AI: even/odd integers

Let’s apply this AI to an example:

x = 0;
y = read_even();
x = y + 1;
y = 2 * x;
x = y - 2;
y = x / 2;

Concrete execution
{x=0; y=undef}
{x=0; y=8}
{x=9; y=8}
{x=9; y=18}
{x=16; y=18}
{x=16; y=8}

Abstract interpr.
{x=e; y=?}
{x=?; y=?}
{x=?; y=?}
{x=?; y=?}
{x=?; y=?}
{x=?; y=?}

Abstraction function

● How did we know that 0 was even?

Abstraction function

● How did we know that 0 was even?
○ an abstraction function (typically denoted by α) tells us which

abstract domain a particular concrete element belongs to

Abstraction function

● How did we know that 0 was even?
○ an abstraction function (typically denoted by α) tells us which

abstract domain a particular concrete element belongs to

concrete
domain

Abstraction function

● How did we know that 0 was even?
○ an abstraction function (typically denoted by α) tells us which

abstract domain a particular concrete element belongs to

concrete
domain

Abstraction function

● How did we know that 0 was even?
○ an abstraction function (typically denoted by α) tells us which

abstract domain a particular concrete element belongs to

concrete
domain

abstract
domain

Abstraction function

● How did we know that 0 was even?
○ an abstraction function (typically denoted by α) tells us which

abstract domain a particular concrete element belongs to

concrete
domain

abstract
domain

e.g.:
α(4) = even
α({}) = bottom

Concretization function

● What about going the other way?

Concretization function

● What about going the other way?
○ an concretization function (typically denoted by γ) tells us which

concrete elements are associated with an abstract value

Concretization function

● What about going the other way?
○ an concretization function (typically denoted by γ) tells us which

concrete elements are associated with an abstract value

abstract
domain

Concretization function

● What about going the other way?
○ an concretization function (typically denoted by γ) tells us which

concrete elements are associated with an abstract value

abstract
domain

Concretization function

● What about going the other way?
○ an concretization function (typically denoted by γ) tells us which

concrete elements are associated with an abstract value

concrete
domain

abstract
domain

Role of abstr., concr., and transfer fcns.

Concrete state

Role of abstr., concr., and transfer fcns.

Concrete state Concrete state

concrete
execution

Role of abstr., concr., and transfer fcns.

Concrete state Concrete state

concrete
execution

Abstract state

abstraction
function

Role of abstr., concr., and transfer fcns.

Concrete state Concrete state

concrete
execution

Abstract state Abstract state

abstraction
function

transfer
functions

Role of abstr., concr., and transfer fcns.

Concrete state Concrete state

concrete
execution

Abstract state Abstract state

abstraction
function

concretization
function

transfer
functions

Example AI: even/odd integers

Let’s apply this AI to an example:

x = 0;
y = read_even();
x = y + 1;
y = 2 * x;
x = y - 2;
y = x / 2;

Concrete execution
{x=0; y=undef}
{x=0; y=8}
{x=9; y=8}
{x=9; y=18}
{x=16; y=18}
{x=16; y=8}

Abstract interpr.
{x=e; y=?}
{x=?; y=?}
{x=?; y=?}
{x=?; y=?}
{x=?; y=?}
{x=?; y=?}

Example AI: even/odd integers

Let’s apply this AI to an example:

x = 0;
y = read_even();
x = y + 1;
y = 2 * x;
x = y - 2;
y = x / 2;

Concrete execution
{x=0; y=undef}
{x=0; y=8}
{x=9; y=8}
{x=9; y=18}
{x=16; y=18}
{x=16; y=8}

Abstract interpr.
{x=e; y=⊥}
{x=?; y=?}
{x=?; y=?}
{x=?; y=?}
{x=?; y=?}
{x=?; y=?}

Example AI: even/odd integers

Let’s apply this AI to an example:

x = 0;
y = read_even();
x = y + 1;
y = 2 * x;
x = y - 2;
y = x / 2;

Concrete execution
{x=0; y=undef}
{x=0; y=8}
{x=9; y=8}
{x=9; y=18}
{x=16; y=18}
{x=16; y=8}

Abstract interpr.
{x=e; y=⊥}
{x=e; y=e}
{x=?; y=?}
{x=?; y=?}
{x=?; y=?}
{x=?; y=?}

Example AI: even/odd integers

Let’s apply this AI to an example:

x = 0;
y = read_even();
x = y + 1;
y = 2 * x;
x = y - 2;
y = x / 2;

Concrete execution
{x=0; y=undef}
{x=0; y=8}
{x=9; y=8}
{x=9; y=18}
{x=16; y=18}
{x=16; y=8}

Abstract interpr.
{x=e; y=⊥}
{x=e; y=e}
{x=o; y=e}
{x=?; y=?}
{x=?; y=?}
{x=?; y=?}

transfer function for +!

Example AI: even/odd integers

Let’s apply this AI to an example:

x = 0;
y = read_even();
x = y + 1;
y = 2 * x;
x = y - 2;
y = x / 2;

Concrete execution
{x=0; y=undef}
{x=0; y=8}
{x=9; y=8}
{x=9; y=18}
{x=16; y=18}
{x=16; y=8}

Abstract interpr.
{x=e; y=⊥}
{x=e; y=e}
{x=o; y=e}
{x=o; y=e}
{x=?; y=?}
{x=?; y=?}

Example AI: even/odd integers

Let’s apply this AI to an example:

x = 0;
y = read_even();
x = y + 1;
y = 2 * x;
x = y - 2;
y = x / 2;

Concrete execution
{x=0; y=undef}
{x=0; y=8}
{x=9; y=8}
{x=9; y=18}
{x=16; y=18}
{x=16; y=8}

Abstract interpr.
{x=e; y=⊥}
{x=e; y=e}
{x=o; y=e}
{x=o; y=e}
{x=e; y=e}
{x=?; y=?}

Example AI: even/odd integers

Let’s apply this AI to an example:

x = 0;
y = read_even();
x = y + 1;
y = 2 * x;
x = y - 2;
y = x / 2;

Concrete execution
{x=0; y=undef}
{x=0; y=8}
{x=9; y=8}
{x=9; y=18}
{x=16; y=18}
{x=16; y=8}

Abstract interpr.
{x=e; y=⊥}
{x=e; y=e}
{x=o; y=e}
{x=o; y=e}
{x=e; y=e}
{x=e; y=e?}

Example AI: even/odd integers

Let’s apply this AI to an example:

x = 0;
y = read_even();
x = y + 1;
y = 2 * x;
x = y - 2;
y = x / 2;

Concrete execution
{x=0; y=undef}
{x=0; y=8}
{x=9; y=8}
{x=9; y=18}
{x=16; y=18}
{x=16; y=8}

Abstract interpr.
{x=e; y=⊥}
{x=e; y=e}
{x=o; y=e}
{x=o; y=e}
{x=e; y=e}
{x=e; y=e?}

Example AI: even/odd integers

What’s the transfer function for division?

↓/→ T even odd 丄

T

even

odd

丄

Example AI: even/odd integers

What’s the transfer function for division?

↓/→ T even odd 丄

T T T T 丄

even T T T 丄

odd T T T 丄

丄 丄 丄 丄 丄

Notes for online readers:
● even/even is top:

○ 6/2 = 3
○ 8/2 = 4

● odd/odd is top:
○ 5/5 = 1
○ 11/5 = 2

■ integer division!

Example AI: even/odd integers

Let’s apply this AI to an example:

x = 0;
y = read_even();
x = y + 1;
y = 2 * x;
x = y - 2;
y = x / 2;

Concrete execution
{x=0; y=undef}
{x=0; y=8}
{x=9; y=8}
{x=9; y=18}
{x=16; y=18}
{x=16; y=8}

Abstract interpr.
{x=e; y=⊥}
{x=e; y=e}
{x=o; y=e}
{x=o; y=e}
{x=e; y=e}
{x=e; y=T}

Example AI: even/odd integers

Let’s apply this AI to an example:

x = 0;
y = read_even();
x = y + 1;
y = 2 * x;
x = y - 2;
y = x / 2;

Concrete execution
{x=0; y=undef}
{x=0; y=8}
{x=9; y=8}
{x=9; y=18}
{x=16; y=18}
{x=16; y=8}

Abstract interpr.
{x=e; y=⊥}
{x=e; y=e}
{x=o; y=e}
{x=o; y=e}
{x=e; y=e}
{x=e; y=T}

for x, our abstraction was precise

Example AI: even/odd integers

Let’s apply this AI to an example:

x = 0;
y = read_even();
x = y + 1;
y = 2 * x;
x = y - 2;
y = x / 2;

Concrete execution
{x=0; y=undef}
{x=0; y=8}
{x=9; y=8}
{x=9; y=18}
{x=16; y=18}
{x=16; y=8}

Abstract interpr.
{x=e; y=⊥}
{x=e; y=e}
{x=o; y=e}
{x=o; y=e}
{x=e; y=e}
{x=e; y=T}

but for y, it was not
for x, our abstraction was precise

Approximation!

Concrete state Concrete state

concrete
execution

Abstract state Abstract state

abstraction
function

concretization
function

transfer
functions

Approximation!

Concrete state Concrete state

concrete
execution

Abstract state Abstract state

abstraction
function

concretization
function

transfer
functions

Approximation!

Concrete state Concrete state

concrete
execution

Abstract state Abstract state

abstraction
function

concretization
function

transfer
functions

Approximation!

Concrete state Concrete state

concrete
execution

Abstract state Abstract state

abstraction
function

concretization
function

transfer
functions

Do the green and orange paths always lead to the same abstract state?

Approximation!

Concrete state Concrete state

concrete
execution

Abstract state Abstract state

abstraction
function

concretization
function

transfer
functions

Do the green and orange paths always lead to the same concrete state?

Approximation!

Concrete state Concrete state

concrete
execution

Abstract state Abstract state

abstraction
function

concretization
function

transfer
functions

Do the green and orange paths always lead to the same concrete state?

We’ll come back to this
question when we
discuss soundness

Trivia Break: Building Materials

This material was in widespread use by 150 BCE; some scholars
believe that it was developed at least a century earlier. Its
widespread use enabled the construction of a number of
architecturally-innovative buildings, including the Pantheon’s dome
(built 113-125 CE), which is still the largest unreinforced dome of
this material in the world. Unlike its modern equivalent, it was laid
rather than poured. Incorporation of different types of lime enabled
this material to “self-repair” cracks, contributing to its longevity.

Trivia Break: Computer Science
This family of multi-tasking, multi-user computer operating systems is

distinguished from its predecessors by being the first “portable”

operating system (i.e., it could run on more than one model of computer).

Development of its first version began in 1969. It is characterized by an

eponymous design philosophy that argues that an operating system

should provide a set of simple tools, each of which performs a limited,

well-defined function; and that larger programs should be built by

composing these tools.

Name the family of operating systems and the place where the first

version of this operating system was created.

Alternative example AI: even/odd integers

Is there an alternative AI that we can use to conclude that y is even
after we analyze the example?

x = 0;
y = read_even();
x = y + 1;
y = 2 * x;
x = y - 2;
y = x / 2;

Alternative example AI: even/odd integers

Is there an alternative AI that we can use to conclude that y is even
after we analyze the example?

x = 0;
y = read_even();
x = y + 1;
y = 2 * x;
x = y - 2;
y = x / 2;

In-class exercise: with a
partner, design an alternative
abstract interpretation that
can conclude that y is even.

Alternative example AI: even/odd integers

Key property that we need to conclude is that x / 2 is even.

Alternative example AI: even/odd integers

Key property that we need to conclude is that x / 2 is even.
● ask yourself: “for what x is that true?”

Alternative example AI: even/odd integers

Key property that we need to conclude is that x / 2 is even.
● ask yourself: “for what x is that true?”

○ simplest answer: x.x%4 = 0 - that is, all xs such that x is
divisible by 4

Alternative example AI: even/odd integers

Key property that we need to conclude is that x / 2 is even.
● ask yourself: “for what x is that true?”

○ simplest answer: x.x%4 = 0 - that is, all xs such that x is
divisible by 4

○ alternative answer: abstract value tracks the number of 2s in
the prime factorization

Alternative example AI: even/odd integers

Key property that we need to conclude is that x / 2 is even.
● ask yourself: “for what x is that true?”

○ simplest answer: x.x%4 = 0 - that is, all xs such that x is
divisible by 4

○ alternative answer: abstract value tracks the number of 2s in
the prime factorization

● cunning plan: add a “divisible by 4” abstract value (mod4) to our
lattice, then rebuild our transfer functions

Alternative example AI: even/odd integers

Next question: where does “divisible by 4” go in the lattice?

{ even, odd } = top
 / \
 {even} {odd}
 \ /
 {} = bottom

Alternative example AI: even/odd integers

Next question: where does “divisible by 4” go in the lattice?

{ even, odd } = top
 / \
 {even} {odd}
 | |
 {mod4} |
 \ /
 {} = bottom

all mod4 integers
are also even!

Alternative example AI: even/odd integers

How to change our transfer functions? Let’s do two examples (+ and /):

Alternative example AI: even/odd integers

How to change our transfer functions? Let’s do two examples (+ and /):

+ T even odd 丄

T T T T 丄

even T even odd 丄

odd T odd even 丄

丄 丄 丄 丄 丄

recall our original
transfer function for +:

Alternative example AI: even/odd integers

How to change our transfer functions? Let’s do two examples (+ and /):

+ T even odd mod4 丄

T T T T 丄

even T even odd 丄

odd T odd even 丄

mod4

丄 丄 丄 丄 丄

recall our original
transfer function for +:

we need to add a row
and a column for mod4:

Alternative example AI: even/odd integers

How to change our transfer functions? Let’s do two examples (+ and /):

+ T even odd mod4 丄

T T T T T 丄

even T even odd even 丄

odd T odd even odd 丄

mod4 T even odd mod4 丄

丄 丄 丄 丄 丄 丄

recall our original
transfer function for +:

we need to add a row
and a column for mod4:

Alternative example AI: even/odd integers

How to change our transfer functions? Let’s do two examples (+ and /):

↓/→ T even odd mod4 丄

T T T T 丄

even T T T 丄

odd T T T 丄

mod4

丄 丄 丄 丄 丄

same thing for division:

Alternative example AI: even/odd integers

How to change our transfer functions? Let’s do two examples (+ and /):

↓/→ T even odd mod4 丄

T T T T T 丄

even T T T T 丄

odd T T T T 丄

mod4 T T T T 丄

丄 丄 丄 丄 丄 丄

same thing for division:

oh no! why is mod4
divided by even top?
● 4/4 = 1 :(
● we need another

lattice element to
make this work!

Alternative example AI: even/odd integers

Another lattice element: “is2”

Alternative example AI: even/odd integers

Another lattice element: “is2”
● sibling of mod4 in the lattice

Alternative example AI: even/odd integers

Another lattice element: “is2”
● sibling of mod4 in the lattice { even, odd } = top

 / \
 {even} {odd}
 / \ |
{mod4} {is2} |
 \ | /
 {} = bottom

Alternative example AI: even/odd integers

Another lattice element: “is2”
● sibling of mod4 in the lattice
● its only purpose is to be

treated specially in the
division transfer function

 { even, odd } = top
 / \
 {even} {odd}
 / \ |
{mod4} {is2} |
 \ | /
 {} = bottom

Alternative example AI: even/odd integers

Another lattice element: “is2”
● sibling of mod4 in the lattice
● its only purpose is to be

treated specially in the
division transfer function
○ in particular, we add the

rule “mod4 / is2 -> even”
○ full transfer functions left

as an exercise

 { even, odd } = top
 / \
 {even} {odd}
 / \ |
{mod4} {is2} |
 \ | /
 {} = bottom

Alternative example AI: let’s try it

x = 0;
y = read_even();
x = y + 1;
y = 2 * x;
x = y - 2;
y = x / 2;

Abstract interpr.
{x=?; y=?}
{x=?; y=?}
{x=?; y=?}
{x=?; y=?}
{x=?; y=?}
{x=?; y=?}

Alternative example AI: let’s try it

x = 0;
y = read_even();
x = y + 1;
y = 2 * x;
x = y - 2;
y = x / 2;

Abstract interpr.
{x=e; y=⊥}
{x=?; y=?}
{x=?; y=?}
{x=?; y=?}
{x=?; y=?}
{x=?; y=?}

Alternative example AI: let’s try it

x = 0;
y = read_even();
x = y + 1;
y = 2 * x;
x = y - 2;
y = x / 2;

Abstract interpr.
{x=e; y=⊥}
{x=e; y=e}
{x=?; y=?}
{x=?; y=?}
{x=?; y=?}
{x=?; y=?}

Alternative example AI: let’s try it

x = 0;
y = read_even();
x = y + 1;
y = 2 * x;
x = y - 2;
y = x / 2;

Abstract interpr.
{x=e; y=⊥}
{x=e; y=e}
{x=o; y=e}
{x=?; y=?}
{x=?; y=?}
{x=?; y=?}

Alternative example AI: let’s try it

x = 0;
y = read_even();
x = y + 1;
y = 2 * x;
x = y - 2;
y = x / 2;

Abstract interpr.
{x=e; y=⊥}
{x=e; y=e}
{x=o; y=e}
{x=o; y=e}
{x=?; y=?}
{x=?; y=?}

Alternative example AI: let’s try it

x = 0;
y = read_even();
x = y + 1;
y = 2 * x;
x = y - 2;
y = x / 2;

Abstract interpr.
{x=e; y=⊥}
{x=e; y=e}
{x=o; y=e}
{x=o; y=e}
{x=?; y=?}
{x=?; y=?}

what should the transfer function for even - is2 be?

Alternative example AI: let’s try it

x = 0;
y = read_even();
x = y + 1;
y = 2 * x;
x = y - 2;
y = x / 2;

Abstract interpr.
{x=e; y=⊥}
{x=e; y=e}
{x=o; y=e}
{x=o; y=e}
{x=?; y=?}
{x=?; y=?}

what should the transfer function for even - is2 be?
● even! why not mod4?

Alternative example AI: let’s try it

x = 0;
y = read_even();
x = y + 1;
y = 2 * x;
x = y - 2;
y = x / 2;

Abstract interpr.
{x=e; y=⊥}
{x=e; y=e}
{x=o; y=e}
{x=o; y=e}
{x=?; y=?}
{x=?; y=?}

what should the transfer function for even - is2 be?
● even! why not mod4? counterexample: 8 - 2 = 6

Alternative example AI: let’s try it

x = 0;
y = read_even();
x = y + 1;
y = 2 * x;
x = y - 2;
y = x / 2;

Abstract interpr.
{x=e; y=⊥}
{x=e; y=e}
{x=o; y=e}
{x=o; y=e}
{x=e; y=e}
{x=?; y=?}

Alternative example AI: let’s try it

x = 0;
y = read_even();
x = y + 1;
y = 2 * x;
x = y - 2;
y = x / 2;

Abstract interpr.
{x=e; y=⊥}
{x=e; y=e}
{x=o; y=e}
{x=o; y=e}
{x=e; y=e}
{x=e; y=T}

Alternative example AI: even/odd integers

● Why did adding is2 and mod4 fail to fix the approximation problem
in the example?

Alternative example AI: even/odd integers

● Why did adding is2 and mod4 fail to fix the approximation problem
in the example?
○ the example relies on the fact that for all X, (X + 1) * 2 - 2 = 2X

■ and if X is initially even, then this means that the result is
divisible by 4

Alternative example AI: even/odd integers

● Why did adding is2 and mod4 fail to fix the approximation problem
in the example?
○ the example relies on the fact that for all X, (X + 1) * 2 - 2 = 2X

■ and if X is initially even, then this means that the result is
divisible by 4

● lesson from this example: most programs rely on complex
invariants, and designing an abstract domain that can capture
those invariants is hard!

Alternative example AI: even/odd integers

● Why did adding is2 and mod4 fail to fix the approximation problem
in the example?
○ the example relies on the fact that for all X, (X + 1) * 2 - 2 = 2X

■ and if X is initially even, then this means that the result is
divisible by 4

● lesson from this example: most programs rely on complex
invariants, and designing an abstract domain that can capture
those invariants is hard!

● how could we get the right answer on this example?

Alternative example AI: even/odd integers

● Why did adding is2 and mod4 fail to fix the approximation problem
in the example?
○ the example relies on the fact that for all X, (X + 1) * 2 - 2 = 2X

■ and if X is initially even, then this means that the result is
divisible by 4

● lesson from this example: most programs rely on complex
invariants, and designing an abstract domain that can capture
those invariants is hard!

● how could we get the right answer on this example?
○ more complex abstract values, e.g., oddTimes2?
○ store the mathematical expression for each variable?

Alternative example AI: even/odd integers

● Why did adding is2 and mod4 fail to fix the approximation problem
in the example?
○ the example relies on the fact that for all X, (X + 1) * 2 - 2 = 2X

■ and if X is initially even, then this means that the result is
divisible by 4

● lesson from this example: most programs rely on complex
invariants, and designing an abstract domain that can capture
those invariants is hard!

● how could we get the right answer on this example?
○ more complex abstract values, e.g., oddTimes2?
○ store the mathematical expression for each variable?

one more
try…

Alternative example AI: even/odd integers

Yet another lattice element: “odd2”
 { even, odd } = top
 / \
 {even} {odd}
 / \ |
{mod4} {is2} |
 \ | /
 {} = bottom

Alternative example AI: even/odd integers

Yet another lattice element: “odd2”
● produced by multiplying an odd

number by 2 (i.e., transfer fcn
for odd * is2 -> odd2)

 { even, odd } = top
 / \
 {even} {odd}
 / \ |
{mod4} {is2} |
 \ | /
 {} = bottom

Alternative example AI: even/odd integers

Yet another lattice element: “odd2”
● produced by multiplying an odd

number by 2 (i.e., transfer fcn
for odd * is2 -> odd2)

● where does it go in the lattice?

 { even, odd } = top
 / \
 {even} {odd}
 / \ |
{mod4} {is2} |
 \ | /
 {} = bottom

Alternative example AI: even/odd integers

Yet another lattice element: “odd2”
● produced by multiplying an odd

number by 2 (i.e., transfer fcn
for odd * is2 -> odd2)

● where does it go in the lattice?
○ a sibling of is2 and mod4?

 { even, odd } = top
 / \
 {even} {odd}
 / | \ |
{mod4} {is2} {odd2} |
 \ \ | /
 {} = bottom

Alternative example AI: even/odd integers

Yet another lattice element: “odd2”
● produced by multiplying an odd

number by 2 (i.e., transfer fcn
for odd * is2 -> odd2)

● where does it go in the lattice?
○ a sibling of is2 and mod4?
○ between even and is2!

 { even, odd } = top
 / \
 {even} {odd}
 / \ |
{mod4} {odd2} /
 | | /
 \ {is2} /

\ | /
 {} = bottom

Alternative example AI: even/odd integers

Yet another lattice element: “odd2”
● produced by multiplying an odd

number by 2 (i.e., transfer fcn
for odd * is2 -> odd2)

● where does it go in the lattice?
○ a sibling of is2 and mod4?
○ between even and is2!
○ now we can add a new rule:

 { even, odd } = top
 / \
 {even} {odd}
 / \ |
{mod4} {odd2} /
 | | /
 \ {is2} /

\ | /
 {} = bottom

Alternative example AI: even/odd integers

Yet another lattice element: “odd2”
● produced by multiplying an odd

number by 2 (i.e., transfer fcn
for odd * is2 -> odd2)

● where does it go in the lattice?
○ a sibling of is2 and mod4?
○ between even and is2!
○ now we can add a new rule:

■ odd2 - is2 -> mod4

 { even, odd } = top
 / \
 {even} {odd}
 / \ |
{mod4} {odd2} /
 | | /
 \ {is2} /

\ | /
 {} = bottom

Alternative example AI: another attempt

x = 0;
y = read_even();
x = y + 1;
y = 2 * x;
x = y - 2;
y = x / 2;

Abstract interpr.
{x=?; y=?}
{x=?; y=?}
{x=?; y=?}
{x=?; y=?}
{x=?; y=?}
{x=?; y=?}

Alternative example AI: another attempt

x = 0;
y = read_even();
x = y + 1;
y = 2 * x;
x = y - 2;
y = x / 2;

Abstract interpr.
{x=e; y=⊥}
{x=?; y=?}
{x=?; y=?}
{x=?; y=?}
{x=?; y=?}
{x=?; y=?}

Alternative example AI: another attempt

x = 0;
y = read_even();
x = y + 1;
y = 2 * x;
x = y - 2;
y = x / 2;

Abstract interpr.
{x=e; y=⊥}
{x=e; y=e}
{x=?; y=?}
{x=?; y=?}
{x=?; y=?}
{x=?; y=?}

Alternative example AI: another attempt

x = 0;
y = read_even();
x = y + 1;
y = 2 * x;
x = y - 2;
y = x / 2;

Abstract interpr.
{x=e; y=⊥}
{x=e; y=e}
{x=o; y=e}
{x=?; y=?}
{x=?; y=?}
{x=?; y=?}

Alternative example AI: another attempt

x = 0;
y = read_even();
x = y + 1;
y = 2 * x;
x = y - 2;
y = x / 2;

Abstract interpr.
{x=e; y=⊥}
{x=e; y=e}
{x=o; y=e}
{x=o; y=odd2}
{x=?; y=?}
{x=?; y=?}

Alternative example AI: another attempt

x = 0;
y = read_even();
x = y + 1;
y = 2 * x;
x = y - 2;
y = x / 2;

Abstract interpr.
{x=e; y=⊥}
{x=e; y=e}
{x=o; y=e}
{x=o; y=odd2}
{x=mod4; y=odd2}
{x=?; y=?}

Alternative example AI: another attempt

x = 0;
y = read_even();
x = y + 1;
y = 2 * x;
x = y - 2;
y = x / 2;

Abstract interpr.
{x=e; y=⊥}
{x=e; y=e}
{x=o; y=e}
{x=o; y=odd2}
{x=mod4; y=odd2}
{x=mod4; y=e}

Success!

Formalizing the AI algorithm

The core algorithm for abstract interpretation is the following:

Formalizing the AI algorithm

The core algorithm for abstract interpretation is the following:
1. convert the program to a CFG

Formalizing the AI algorithm

The core algorithm for abstract interpretation is the following:
1. convert the program to a CFG
2. start with an initial estimate at every program point (usually ⊥)

Formalizing the AI algorithm

The core algorithm for abstract interpretation is the following:
1. convert the program to a CFG
2. start with an initial estimate at every program point (usually ⊥)
3. put each program point in a worklist

Formalizing the AI algorithm

The core algorithm for abstract interpretation is the following:
1. convert the program to a CFG
2. start with an initial estimate at every program point (usually ⊥)
3. put each program point in a worklist
4. until the worklist is empty, choose an item from the worklist and:

Formalizing the AI algorithm

The core algorithm for abstract interpretation is the following:
1. convert the program to a CFG
2. start with an initial estimate at every program point (usually ⊥)
3. put each program point in a worklist
4. until the worklist is empty, choose an item from the worklist and:

a. if the item is a basic block, abstractly execute it using the
transfer functions (and abstraction function, if applicable)

Formalizing the AI algorithm

The core algorithm for abstract interpretation is the following:
1. convert the program to a CFG
2. start with an initial estimate at every program point (usually ⊥)
3. put each program point in a worklist
4. until the worklist is empty, choose an item from the worklist and:

a. if the item is a basic block, abstractly execute it using the
transfer functions (and abstraction function, if applicable)

b. if the item is a join point, use the LUB to combine its inputs

Formalizing the AI algorithm

The core algorithm for abstract interpretation is the following:
1. convert the program to a CFG
2. start with an initial estimate at every program point (usually ⊥)
3. put each program point in a worklist
4. until the worklist is empty, choose an item from the worklist and:

a. if the item is a basic block, abstractly execute it using the
transfer functions (and abstraction function, if applicable)

b. if the item is a join point, use the LUB to combine its inputs

Using LUB at join points
models the fact that the
program may take either
branch of an if statement.

Formalizing the AI algorithm

The core algorithm for abstract interpretation is the following:
1. convert the program to a CFG
2. start with an initial estimate at every program point (usually ⊥)
3. put each program point in a worklist
4. until the worklist is empty, choose an item from the worklist and:

a. if the item is a basic block, abstractly execute it using the
transfer functions (and abstraction function, if applicable)

b. if the item is a join point, use the LUB to combine its inputs
c. if either a. or b. caused a change, re-add dependent blocks to

the worklist

What about loops?

What about loops?

● this algorithm terminates, even if the program contains loops that
might run forever, because:

What about loops?

● this algorithm terminates, even if the program contains loops that
might run forever, because:
○ the lattice is of finite size
○ LUB is monotonic

What about loops?

● this algorithm terminates, even if the program contains loops that
might run forever, because:
○ the lattice is of finite size
○ LUB is monotonic You may be surprised that it is

possible to build an abstract
interpretation using (some)
infinite-height lattices. Next
week, we’ll discuss widening,
which is the technique for this.

What about loops?

● this algorithm terminates, even if the program contains loops that
might run forever, because:
○ the lattice is of finite size
○ LUB is monotonic

● that is, each loop will be analyzed at most k-1 times for each
variable in the loop, where k is the height of the lattice

What about loops?

● this algorithm terminates, even if the program contains loops that
might run forever, because:
○ the lattice is of finite size
○ LUB is monotonic

● that is, each loop will be analyzed at most k-1 times for each
variable in the loop, where k is the height of the lattice

● otherwise, loops are just a join point and a back-edge in the CFG

Why start with bottom?

Why start with bottom?

● the abstract interpretations we’ve considered so far are
optimistic: they start with ⊥ and then go upwards in the lattice

Why start with bottom?

● the abstract interpretations we’ve considered so far are
optimistic: they start with ⊥ and then go upwards in the lattice
○ these algorithms get the most precise answer

Why start with bottom?

● the abstract interpretations we’ve considered so far are
optimistic: they start with ⊥ and then go upwards in the lattice
○ these algorithms get the most precise answer
○ but their downside is that they must run to fixpoint - they

cannot be stopped early (the result might still be unsound)!

Why start with bottom?

● the abstract interpretations we’ve considered so far are
optimistic: they start with ⊥ and then go upwards in the lattice
○ these algorithms get the most precise answer
○ but their downside is that they must run to fixpoint - they

cannot be stopped early (the result might still be unsound)!
● pessimistic algorithms are also possible

Why start with bottom?

● the abstract interpretations we’ve considered so far are
optimistic: they start with ⊥ and then go upwards in the lattice
○ these algorithms get the most precise answer
○ but their downside is that they must run to fixpoint - they

cannot be stopped early (the result might still be unsound)!
● pessimistic algorithms are also possible

○ start with T everywhere and move downwards in the lattice

Why start with bottom?

● the abstract interpretations we’ve considered so far are
optimistic: they start with ⊥ and then go upwards in the lattice
○ these algorithms get the most precise answer
○ but their downside is that they must run to fixpoint - they

cannot be stopped early (the result might still be unsound)!
● pessimistic algorithms are also possible

○ start with T everywhere and move downwards in the lattice
○ can be stopped at any time (e.g., when a budget is reached), but

answer may not be precise

Another example

Another example

● Consider an abstract interpretation for constant propagation

Another example

● Consider an abstract interpretation for constant propagation
○ the goal of constant propagation is to determine whether, for

each variable, its value can be known at compile time

Another example

● Consider an abstract interpretation for constant propagation
○ the goal of constant propagation is to determine whether, for

each variable, its value can be known at compile time
○ constant propagation is a standard compiler optimization

Another example

● Consider an abstract interpretation for constant propagation
○ the goal of constant propagation is to determine whether, for

each variable, its value can be known at compile time
○ constant propagation is a standard compiler optimization
○ lattice:

Another example

● Consider an abstract interpretation for constant propagation
○ the goal of constant propagation is to determine whether, for

each variable, its value can be known at compile time
○ constant propagation is a standard compiler optimization
○ lattice:

 top

… -2 -1 0 1 2 …

 bottom

Another example

Consider the following program:

w = 5
x = read()
if (x is even)
 y = 5
 w = w + y
else
 y = 10
 w = y
z = y + 1
x = 2 * w

(on the whiteboard)

Correctness of Abstract Interpretation

Correctness of Abstract Interpretation

● I’ve claimed several times that it is possible to use abstract
interpretation to produce sound program analyses

Correctness of Abstract Interpretation

● I’ve claimed several times that it is possible to use abstract
interpretation to produce sound program analyses
○ that is, analyses without false negatives

Correctness of Abstract Interpretation

● I’ve claimed several times that it is possible to use abstract
interpretation to produce sound program analyses
○ that is, analyses without false negatives

● The key idea to demonstrate that an abstract interpretation is
sound is the galois connection between a concrete value and the
concretization of its abstraction function

Correctness of Abstract Interpretation

● I’ve claimed several times that it is possible to use abstract
interpretation to produce sound program analyses
○ that is, analyses without false negatives

● The key idea to demonstrate that an abstract interpretation is
sound is the galois connection between a concrete value and the
concretization of its abstraction function
○ ideally, we’d like ∀ x, γ(α(x)) = x

Correctness of Abstract Interpretation

● I’ve claimed several times that it is possible to use abstract
interpretation to produce sound program analyses
○ that is, analyses without false negatives

● The key idea to demonstrate that an abstract interpretation is
sound is the galois connection between a concrete value and the
concretization of its abstraction function
○ ideally, we’d like ∀ x, γ(α(x)) = x
○ but this is too strong: approximation may cause us to lose

information! So, the standard formalism is:
■ ∀ x, x ∈ γ(α(x))

Correctness of Abstract Interpretation

● I’ve claimed several times that it is possible to use abstract
interpretation to produce sound program analyses
○ that is, analyses without false negatives

● The key idea to demonstrate that an abstract interpretation is
sound is the galois connection between a concrete value and the
concretization of its abstraction function
○ ideally, we’d like ∀ x, γ(α(x)) = x
○ but this is too strong: approximation may cause us to lose

information! So, the standard formalism is:
■ ∀ x, x ∈ γ(α(x))

And, it’s also necessary to show
that the Galois connection holds
for the transfer functions!

Approximation!

Concrete state Concrete state

concrete
execution

Abstract state Abstract state

abstraction
function

concretization
function

transfer
functions

Do the green and orange paths always lead to the same concrete state?

Remember this
diagram from earlier?

Remember this
diagram from earlier?Approximation!

Concrete state Concrete state

concrete
execution

Abstract state Abstract state

abstraction
function

concretization
function

transfer
functions

Do the green and orange paths always lead to the same concrete state?

What we need to show
is that for all transfer
functions, the green
path is a subset of the
orange path

Course Announcements

● PA2 (full) is due next Monday (one week from today!)

