
A Theory of Type Qualifiers*

Jeffrey S. Foster Manuel Fghndrich
jfoster@cs.berkeley.edu maf@microsoft .com

Alexander Aiken
aiken@cs.berkeley.edu

EECS Department
University of California, Berkeley

Berkeley, CA 94720- 1776

Abstract

We describe a framework for adding type qualifiers to a lan-
guage. Type qualifiers encode a simple but highly useful
form of subtyping. Our framework extends standard type
rules to model the flow of qualifiers through a program,
where each qualifier or set of qualifiers comes with addi-
tional rules that capture its semantics. Our framework al-
lows types to be polymorphic in the type qualifiers. We
present a cons%inference system for C as an example appli-
cation of the framework. We show that for a set of real C
programs, many more consts can be used than are actually
present in the original code.

1 Introduction

Programmers know strong invariants about their programs,
and it is widely accepted by practitioners that such invari-
ants should be automatically, statically checked to the ex-
tent possible [Mag93]. However, except for static type sys-
tems, modern programming languages provide little or no
support for expressing such invariants. In our view, the
problem is not a lack of proposals for expressing invariants;
the research community, and especially the verification com-
munity, has proposed many mechanisms for specifying and
proving properties of programs. Bather, the problem lies in
gaining widespread acceptance in practice. A central issue
is what sort of invariants programmers would be willing to
write down.

In this paper we consciously seek a conservative frame-
work that minimizes the unfamiliar machinery programmers
must learn while still allowing interesting program invariants
to be expressed and checked. One kind of programming an-
notation that is widely used is a type qualifier.

Type qualifiers are easy to understand, yet they can ex-
press strong invariants. The type system guarantees that in
every program execution the semantic properties captured
by the qualifier annotations are maintained. This is in con-
trast to dynamic invariant checking (e.g., assert macros or

*This research was supported in part by the National Science
Foundation Young Investigator Award No. CCR-9457812, NASA
Contract No. NAG2-1210, and an NDSEG fellowship.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advan-
tage and that copies bear this notice and the full citation on the first page.
To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
SIGPLAN ‘99 (PLDI) 5/99 Atlanta, GA, USA
(B 1999 ACM 1-58113-083-X/99/0004,.,85.00

Purify [Purl), which test for properties in a particular pro-
gram execution.

A canonical example of a type qualifier from the C world
is the ANSI C qualifier const. A variable with a type an-
notated with const can be initialized but not updated.’ A
primary use of const is annotating pointer-valued function
parameters as not being updated by the function. Not only
is this information useful to a caller of the function, but it
is automatically verified by the compiler (up to casting).

Another example is Evans’s lclint [Eva96], which intro-
duces a large number of additional qualifier-like annotations
to C as an aid to debugging memory usage errors. One
such annotation is nonnull, which indicates that a pointer
value must not be null. Evans found that adding such an-
notations greatly increased compile-time detection of null
pointer dereferences [Eva96]. Although it is not a type-
based system, we believe that annotations like lclint’s can
be expressed naturally as type qualifiers in our framework.

Yet another example of type qualifiers comes from
binding-time analysis, which is used in partial evaluation
systems [HenSl, DHM95]. Binding-time analysis infers
whether values are known at compile time (the qualifier
static) or may not be known until run time (the quali-
fier dynamic) by specializing the program with respect to an
initial input.

There are also many other examples of type qualifiers in
the literature. Each of the cited examples adds particular
type qualifiers for a specific application. This paper presents
a framework for adding new, user-specified type qualifiers to
a language in a general way. Our framework also extends the
standard type system to perform qualifier inference, which
propagates programmer-supplied annotations through the
program and checks them. Such a system gives the pro-
grammer more lmplete information about qualifiers and
makes qualifiers more convenient to use than a pure check-
ing system.

The main contributions of the paper are

l We show that it is straightforward to parameterize a
language by a set of type qualifiers and inference rules
for checking conditions on those qualifiers. In particu-
lar, the changes to the lexing, parsing, and type check-
ing (see below) phases of a compiler are minimal. We
believe it would be realistic to incorporate our proposal
into software engineering to018 for any typed language.

‘C allows type casts to remove coastness, but the result is imple-
mentation dependent [KR88].

192

http://crossmark.crossref.org/dialog/?doi=10.1145%2F301631.301665&domain=pdf&date_stamp=1999-05-01

l We show that the handling of type qualifiers can be
separated from the standard type system of the lan-
guage. That is, while the augmented type system in-
cludes rules for manipulating and checking qualifiers,
in fact the computation of qualifiers can be isolated in
a separate phase after standard typechecking has been
performed. This factorization is similar to that of re-
gion inference [TT94].

l We introduce a natural notion of qualifier polymor-
phism that allows types to be polymorphic in their
qualifiers. We present examples from existing C pro-
grams to show that qualifier polymorphism is useful
and in fact necessary in some situations.

l We present experimental evidence from a prototype
qualifier inference system. For this study, we exam-
ine the use of the qualifier const on a set of C bench-
marks. We show that even in cases where programmers
have apparently tried to systematically mark variables
as const, monomorphic qualifier inference is able to in-
fer many additional variables as const. Furthermore,
polymorphic qualifier inference finds more const vari-
ables than monomorphic inference. This study shows
both that qualifier inference is practical and useful,
even for existing qualifiers and programs.

The technical observation behind our framework is that a
type qualifier q introduces a simple form of subtyping: For
all types r, either r 5 q 7 or q r 5 7. Here, as through
the rest of the paper, we write qualifiers in prefix notation,
so q r represents standard type r qualified by q. We illus-
trate the subtyping relationship using the examples given
above. In C, non-const I-values can be promoted to const
I-values, but not vice-versa. We capture this formally by
saying that T 5 const 7 for any type r. In Evans’s system,
the set of non-null pointers is a subset of the set of all point-
ers, which is expressed as nonnull T 5 r. In binding time
analysis values may be promoted from static to dynamic.
Since static and dynamic are dual notions, we can choose
to write static r 5 T or r -< dynamic r, depending on
which qualifier name we regard as the canonical one.

Our framework extends a language with a set of standard
types and standard type rules to a qualified type system as
follows.’ The user defines a set of n type qualifiers 91, . . . , q,,
and indicates the subtyping relation for each (whether qi r 5
r or r 5 qi r for any standard type 7). Each level of a
standard type may be annotated with a set of qualifiers,
e.g., if rqf(int) is a standard type, then q1 ref(q2 int) is a
qualified type, where q1 qualifies the ref and q2 qualifies the
int. We extend the standard type system to infer qualified
types.

The polymorphic version of our system requires polymor-
phic constrained types to capture bounds on polymorphic
qualifier variables. This form of polymorphic types involves
only relatively simple constraints that can be solved with
very efficient algorithms [HR97].

Each qualifier comes with rules that describe well-formed
types and how qualifiers interact with the operations in
the language. These rules are supplied by the user and
may be nearly arbitrary (see Section 2.4). For example,
a rule for const adds a qualifier test to require that the left-
hand side of an assignment is non-const. An example of a

‘Apologies to Mark P. Jones for overloading the term qualified
types [Jon92].

well-formedness condition comes from binding time analysis:
Nothing dynamic may appear within a value that is static.
Thus, a type such as static (dynamic Q + dynamic p) is
not well-formed.3

Because our framework is parameterized by the set of
qualifiers, we must extend not only the types, but also
the source language. We add both qualifier annotations,
which introduce qualifiers into types, and qualifier asser-
tions, which enforce checks on the qualifiers of a qualified
type. These extensions allow the programmer to express the
invariants that are to be checked by the qualifier inference
rules.

We conclude this section with a brief illustration of the
need for qualifier polymorphism. Qualifier polymorphism
solves a problem with const familiar to C and C++ pro-
grammers. One of the more awkward consequences of the
standard (monomorphic) C++ type system appears in the
Standard Template Library (STL) [MSS96] for C++. STL
must always explicitly provide two sets of operations, one
for constant data structures and one for non-constant data
structures. For illustration, consider the following pair of C
functions:

typedef const int ci;
int *idl(int *x) f return x; >
ci *id2(ci *x) C return x; 1

C programmers would like to have only one copy of this
function, since both versions behave identically and in fact
compile to the same code. Unfortunately we need both. A
pointer to a constant cannot be passed to id1 without a
cast. A pointer to a non-constant can be passed to id2, but
then the return value will be const. In the language of type
theory, this difficulty occurs because the identity function
has type &~a + IE(Y, with qualifier set 6 appearing both co-
and contravariantly.

In part because of the lack of const polymorphism in
C and C++, const is often either not used, or function
results are deliberately cast to non-const. For example, the
standard library function strchr takes a const char *s as
a parameter but returns a char * pointing somewhere in s.
By adding polymorphism, we allow const to be used more
easily without resorting to casting.

The rest of this paper is organized as follows. Section 2
describes our framework in detail, including the rules for
const. Section 3 discusses type inference, qualifier poly-
morphism, and soundness. Section 4 describes our const-
inference system. Section 5 discusses related work, Section 6
suggests future directions, and Section 7 concludes.

2 Qualified Type Systems

For our purposes, types are terms over a set of type con-
structors C and type variables TVar. Program variables are
denoted by PVar. Each type constructor c has an arity a(c).
We denote the set of types by C&p:

%P ::= a I C(QP,, *. . > IzlP,(,))

where (Y E TVar and c E C. A type environment A is a map
A : PVar + Typ. We abbreviate the vector (~1,. . . , z,) by

‘Many descriptions of binding-time analysis omit the standard
types. In such a system, this type would be written static (dynamic -+
dynamic).

193

e “I
1

%; 2 then ez else ea f i
let 2 = ei in e2 ni

v 7 z
x E PVar
nEZ

1 Ax.e

Figure 1: Source language

const dvnamic

/I\
cons jmemic

const nonzero vc nonzero

nonzero

Figure 2: Example qualifier lattice

3. We define

A[&, q(y) = $Y) Y @ lxl,... ,xn)
y = xj

where the zi are distinct.
We demonstrate our framework by adding type qualifiers

to the functional language shown in Figure 1. Using the C
convention, we interpret 0 in the guard of an if statement
as false and any non-zero value as true. Here we distinguish
syntactic values v (which can be evaluated without compu-
tation) from general expressions e. We use a call-by-value
language, though the addition of qualifiers works equally
well for call-by-name languages.

For this language, C = {int, +} with arities 0 and 2, re-
spectively, and the type system is that of the simply-typed
lambda calculus. Although this language is convenient for
demonstrating the type checking system, some qualifiers
(e.g., const) are not meaningful in it. In Section 2.4, we
add updateable references (in C terminology, Z-values) to our
language and give the additional inference rules for const.

The user supplies a set of qualifiers q1 , . . . , q,, , annotated
to indicate the subtyping relation.

Definition 1 A type qualifier q is positive (negative) if r 3
q T (q 7 5 T) for any type 7.

For convenience we denote the absence of qualifier q by I,
if q is positive or T, if q is negative.

We extend subtyping to sets of qualifiers by defining a
qualifier lattice.

Definition 2 (Qualifier lattice) Each positive qualifier q
defines a two-point lattice L, = I, E q. Each negative

P ..- ..- QT
::= a 1 int I (pl + P2)

9’ ::= Kll

Figure 3: Type language with qualifiers

qualifier q defines a two-point lattice L, = q & T,. The
qualifier lattice L is defined by L = Lql x . . . x L,, . We
write I and T for the bottom and top elements of L.

Clearly it is unnecessary to model both positive and neg-
ative qualifiers, since they are dual notions. Instead of using
a negative qualifier q, we can give T, a name and use it as
a positive qualifier, rearranging the type inference rules ap-
propriately. However, as it is often more intuitive to think
of certain qualifiers as being positive or negative, we allow
both.

Figure 2 shows the qualifier lattice for the positive quali-
fiers const and dynamic and the negative qualifier nonzero.
A nonzero qualifier on an integer indicates that the integer
cannot be zero. Instead of writing I, or T, in the picture
we have simply omitted the name q. (static is just another
name for Idmc, and we have omitted it.) Notice that mov-
ing up the lattice adds positive qualifiers or removes negative
qualifiers.

We use C for the ordering on L, and I-I and
U for meet and join. For a positive (negative)
qualifier qj , we denote by -qi the lattice element
U-n,... , J-Pi-1 3 ‘ei > Tqi+l> * * * , Tq,) (for negative quali-
fiers (IpI, . . . > hi-1 t Tqi 1 hi+-1 1.. . > &,))I where 4j ad
Tqj are the minimal and maximal elements of Lqj.

This general formulation allows any combination of qual-
ifiers to appear on any type. In practice, however, qualifiers
need not be orthogonal. The analysis designer may specify
inference rules that depend on multiple qualifiers and well-
formedness conditions that prohibit certain combinations of
qualifiers.

2.1 Qualified Types

The next step is to add qualifiers to the standard type sys-
tem. We define a new set of types Ql$p, the qualified types,
by

&C&p ::= Q r

Q’
::= Q I c(Q!&P~,. . . , Q!&P,(,$ c E C
::= Ic 1 I

where IE E QVars, the set of variables that range over type
qualifiers, and the I are elements of the lattice L. The qual-
ified types are just the standard types annotated with sets
of qualifiers, i.e., lattice elements or qualifier variables. No-
tice that we do not need variables that range over qualified
types, since the combination of a qualifier variable and a
type variable K a serves the same purpose.

Figure 3 shows the qualified types for our example
language. To avoid ambiguity, we parenthesize function
types. Example qualified types are dynamic nonzero int and
dynamic (const (Y + n p). Notice that we allow qualifiers
to appear on all levels of a type, even though a particular
qualifier may only be associated with certain standard types
(e.g., const only applies to updateable references).

194

We now extend the C relation to a subtyping relation
4 on &tip. We create a set of subtyping rules that give
judgments k p 5 p’, meaning that p is a subtype of p’.
We abbreviate k {p 5 p’, p’ j p} by I- p = p’. The
system also uses judgments of the form t- Q _C Q’, which
is valid if & E Q’ holds in the lattice. Figure 4a contains
the subtyping rules for our example language.

The choice of subtyping rules depends on the meanings
of the type constructors C. In general, for any c E C the
rule

+Q&Q’
k pi = pi i E [l..n]

~Qcpl,... rpn 5Q I I I c PI,... >P,)

is sound. Indeed, this is the standard choice if c constructs
updateable references (see Section 2.4).

2.2 Qualifier Annotations and Qualifier
Assertions

Now we wish to extend the standard type system to infer
qualified types. Our construction should apply to any set of
type qualifiers. Thus we immediately encounter a problem,
because when constructing a qualified type we do not know
how to choose the top-level qualifiers, i.e., the qualifiers on
the outermost constructor.

We divorce this issue from the type system by adding
qualifier annotations to the source language. Initially we as-
sume that any new top-level qualifier is 1. We then allow
user annotations that change the top-level qualifier mono-
tonically. Dually, we also add .qualifier assertions to the
source language that allow the user to check the top-level
qualifier on a type. While we also allow extra constraints on
the qualifiers to be added to the type rules, qualifier asser-
tions are a simple way to test invariants, and their use does
not require extensive knowledge of type systems.

For our example language, we add productions for anno-
tations and assertions:

e : j= j;,

e

Here qualifier annotation 1 e tells the type checker that 1 e’s
top-level qualifier should be at least 1. Note that the qual-
ifier on an abstraction qualifies the function type itself and
not the type of the parameter. The qualifier assertion ell
requires that if Qe is e’s top-level qualifier, then Qe E 1.

2.3 Qualified Type Systems

The final step is to extend the original type checking system
to handle qualified types. Intuitively this extension should
be natural, in the sense that adding type qualifiers should
not modify the structure of inferred types but only their
qualifiers. We must also extend the type system with a sub-
sumption rule, to allow subtyping, and rules for qualifier as-
sertions and annotations. The resulting qualified type system
for our example language is shown in Figure 4b. Judgments
are of the form A l- e : p, meaning that in the type envi-
ronment A expression e has qualified type p. The system
in Figure 4 is the standard subtyping system (see [MitSl])
specialized to our application. Section 3.1 contains a formal
description of the construction of a qualified type system
from a standard type system.

In general each qualifier comes with a set of rules de-
scribing how the qualifier interacts with the operations in
the language. Notice in Figure 4b that the antecedents of
certain rules, e.g., (App), match the types of subexpres-
sions against arbitrary qualifiers Q. We allow the qualifier
designer to restrict these Q to enforce the semantics of par-
ticular qualifiers. In Section 2.4 we show how a type rule for
assignment is modified for the const qualifier.

We define two pairs of transformation functions between
standard and qualified types and expressions. For a qualified
type p E QZ$p, we define strip(p) E Typ to be p with all
the qualifiers removed. Analogously, for an expression e in
the annotated language, strip(e) is e without any qualifier
annotations or assertions.

In the other direction, for a standard type r E !@p we
define 1(r) to be the qualified type p with the same type
structure as r and all qualifiers set to 1. Analogously, for
an expression e in the original language, I(e) is the corre-
sponding expression in the annotated language with only I
qualifier annotations and no qualifier assertions.

Observation 1 Let l-s be the judgment relation of the
type system of the simply-typed lambda calculus, and let
I- be the judgment relation of the type system given in Fig-
ure 4. Then

l If 0 ks e : T, then 0 I- I(e) : 1(r).

l If 0 I- e’ : p, then 0 i-s strip(e’) : strip(p).

This captures our intuitive requirement that the type qual-
ifiers do not modify the underlying type structure.

Even without any additional rules on qualifiers, the qual-
ified type system can be quite useful. Perhaps the most ob-
vious kind of type qualifier to add is one that captures a
property of a data structure. For example, we may want to
distinguish between sorted lists and possibly unsorted lists.
We add a negative type qualifier sorted and annotate all of
our sorting functions so they return sorted lists. (We do not
attempt to verify that sorted is placed correctly-we simply
assume it is.) We can then add qualifier assertions, e.g., to
check that a merge function is only called with sorted lists.

2.4 Example: const

Many qualifiers include restrictions on their usage. In our
system, these restrictions can be expressed as qualifier asser-
tions or as extra constraints between qualifiers. We illustrate
the general pattern by adding updateable references (in C
terminology, I-values) to our example language and giving
the rules for const.

Qualifier annotations and assertions can always be used
safely (see Section 3.3), whereas modifications to the type
rules must be made with care. It is up to the qualifier de-
signer to ensure that after any modifications the type infer-
ence rules remain not only sound, but also intuitive to the
programmer, who sees only the presence or absence of qual-
ifiers and not the underlying type system. Thii is especially
important when designing multiple, interacting qualifiers,
which can potentially complicate the type system.

We add ML-style references to the language in Figure 1;
for a discussion of const in the C type system, see Section 4.
As mentioned in the introduction const is positive (for any
r, r 5 const r). We extend the source language and the

195

I- Ql c 92
k Ql int 5 Q2 int

i- Ql C Q2 i- ~2 5 PI k P: 5 P’Z

b QI (PI --t P;, 5 92 (~2 + P;)

(a) Subtyping rules

(SubInt)

(SubFun)

Ake:p kp5p’
Al-e:p’

Al-e:QT I-QLl
A I- e/l : Q 7

Al-e:Qr l-&El
Al-le:lr

A k n : I int

A I- x : A(x)

A[x H p.] k e : p
A k Xz.e : I (pI -+ p)

A I- el : Q (~2 -+ P) A I- e2 : ~2

A k el e2 : p

(Sub)

(Assert)

(Annot)

W

W)

(Ld

(APP)

A!-ei:Qint AFe2:p Ate2:p
A I- if el then e2 else eg fi : p

A k el : p1 A[x I+ pl] I- e2 : p2
A b let x = el in e2 ni : p2

(b) Syntax-directed rules

(If)

(Let)

Figure 4: Basic type checking rules

qualified type language:

e ..- ..- . ..]refe]!e(ei.=er
V ..- ..- ... IO
7

..- ..- - +. 1 ref(p) 1 unit

In this language, ref e creates an updateable reference, !e
returns the contents of a reference, and ei := e2 stores the
value of es in reference er. The type unit has only one value,
0.

Since we have introduced a new type constructor ref,
we also need to describe how it interacts with subtyping.
There are well-known problems with mixing subtyping and
updateable references [AC96]. The obvious rule,

is unsound. For example, suppose we allowed subtyping
under a ref. Then we could typecheck the following code
(any missing qualifiers are I):

1 let c = ref(nonzer0 37) in
2 let y = xin

i
y :=o;
(! x) I.-o

5 ni ni

Line 3 typechecks because we can promote the type of
y to -nonzero int, since by subtyping nonzero int 5
Tnonzero int. But notice that this does not affect the type

of z, hence line 4 also typechecks even though the contents
of 2 is now 0.

The solution to this problem is to ensure that any aliases
of the same refcell contain the same qualifiers, which can be
achieved by using equality on the type of the refs contents
in the subtyping rule.

I- Ql c 92 I- p1 = p2

k &I r&l) 5 92 d(m)
(SubRef)

The subtyping rule for unit is the expected rule:

I- &I E Q2
I- &I unit 5 Q2 unit

We give type rules for our new constructs; here we jump
directly to the qualified type rules.

A I- () : I unit

Al-e:p
A I- ref e : I ref(p)

A I- e : Q d(p)
Al-!e:p

A I- el : Q ref(pz) A I- e2 : ~2
A I- el :=e2 : 1 unit

(Unit)

OW

(Deref)

(Assign)

196

The semantics of const requires that the left-hand side
of an assignment be non-const. In our framework, this re-
quirement can be expressed with an assertion ei]-rCO.st := ez
on every assignment. Notice that such assertions can be
added automatically.

Another way to add this restriction is to change (Assign).
Recall that in our construction of the qualified type rules,
whenever we needed to insert a qualifier but had no way of
choosing one, we simply allowed all qualifiers. This is where
& came from in (Assign).

Rather than using annotations, we allow the qualifier
designer to place restrictions at these choice points. Thus
(Assign) becomes

AEel: Tconst ref(pz) A I- e2 : p2
Abel:=e2:Iunit (Assign’)

2.5 Practical Considerations

Although adding qualifier annotations and assertions
changes the syntax of the source language, in practice the
changes to the lexer and parser can be minimal. We can
require that all qualifiers begin with a reserved symbol, so
that the lexer can unambiguously tokenize qualifiers. The
grammar for types is extended so that qualifiers can appear
on all levels of a type, using well-understood techniques to
avoid ambiguity [ASUS8]. We add a special syntactic form
for assertions.

We have prototyped such a set of extensions to an ANSI
C front end. The extended language accepts standard ANSI
C as a subset. The extensions required only trivial modifi-
cations.

We can transform a qualified program to an unqualified
program simply by removing the qualifiers and the asser-
tions. One way to do this is to follow the approach of Evans
[Eva961 and use special comment syntax for our language
extensions. This has the advantage that a compiler for the
standard language will automatically ignore all qualifiers,
though it makes the parser for the qualified type system
much more complicated, especially when arbitrary levels of
qualification are permitted.

3 Type Inference, Polymorphism, and Soundness

3.1 Type Inference

The rules in Figure 4 describe a type checking system. We
can also extend a type inference system in a similar way. As
before we assume that the original type system is monomor-
phic; polymorphism can be dealt with as described in Sec-
tion 3.2. We view the standard type inference system as
a collection of type inference rules RI, . . . , & giving judg-
ments of the form A b e : 7; C, meaning in type environ-
ment A expression e has type r under equality constraints
C. Formally, the constraints generated by typing judgments
are given by

A solution to a set of equality constraints {Ii = ri} is a
substitution S : TVar + 7)~ that maps type variables to
ground types (types without variables) such that I- S(Ii) =
S(ri) for all i. If A + e : 7; C and a solution S of C exists,
then S defines a valid typing of e. If no solution exists, e is
untypable.

For expository purposes we assume that the type rules
Ri can be written in the form

A[i? C) 7’1 i- el : 71; Cl . . . A[Z” I+ F] t e, : TV,; C,
C = (Uy=“=, Ci) U {Ii = ri}

Al-e:~~;c

where the ei are the immediate subexpressions of e (i.e., the
inference rules are compositional), and the {Ii = ri} are a
set of equality constraints between types, usually the ri and
Te.

In order to construct a new rule for qualified types, we
define a spread operation (similar to [TT94])

SP : (TVar + QTYP) x LIP + Q%P
that consistently rewrites standard types as qualified types.
The first parameter of sp(., .) is a mapping V that is used to
consistently rewrite type variables and metavariables, and
the second parameter is the type to be rewritten.

SP(v, 4 = V(cY)
SPW, 4%. * f I Tz(c))) =

n C(SP(v, 4,. * . , SP(v, T,(c)))

where the cr are standard type variables and the K are fresh
variables ranging over lattice elements. Intuitively, when-
ever sp(., .) encounters a type constructor, it does not know
which qualifier to add, and so the translation allows any
qualifier to appear on the constructor.

From the original type inference rules & we construct
the qualified type inference rules G as

A[5? I+ ip(v,)‘] I- el : sp(V,ri); Ci ...
A[Z” e sp(V,h] I- e, : sp(V, rn); C,,

C = (Ubl C;)eU $?:I) z SP(V9 ri)}
A , e;

where V maps each distinct metavariable r in & to a dis-
tinct qualified type metavariable p, and each variable cr in
Ri to a distinct qualified type K (Y.

For example, in the standard type inference system for
our language, the application rule is

Al-el:q;Cl A!-ez:n;C2
c = Cl u c2 u (71 = r2 + a}

A I- el e2 : cr; C

The constructed rule in the qualified type system is

At-eel :pl;Cl A I- e2 : pz; CZ
c = Cl u c2 u (p1 = K (p2 + K’ a)}

A I- el e2 : K’ cw; C

As in Figure 4 we add a subsumption rule and rules for
qualifier annotations and assertions to the constructed type
inference system. The resulting qualified type inference sys-
tem proves judgments of the form A I- e : p; C, where now
C contains subtyping constraints and lattice inequalities:

c ::= {Pl 5 p2) I {Sl L &2} I Cl u c2

These constraints arise from the subsumption rule and from
equality constraints in the original rules (recall that p = p’
is an abbreviation for {p 5 p’, p’ 5 p}, where p and p’ are
qualified types).

To solve the subtyping constraints, we first apply the
subtyping rules (in Figure 4a for our example language) to
the constraints so that we are left with only lattice con-
straints. These constraints are of the form IE C L, L E K, or
L1 _C La. This is an atomic subtyping system, which can be
solved in linear time for a fixed set of qualifiers [HRS’I].

197

3.2 Polymorphism 3.3 Soundness

As mentioned in the introduction, we can add a notion of
polymorphic type qualifiers. We begin by adding polymor-
phic constrained types u to our type language:

CJ ::= vz.p\c
P ..- ..- QT

9’
::= Q) int 1 pl + p2
::= &I 1

By using standard techniques found in [WF94, EST95,
OSW97] we show that the type system we have pre-
sented, with qualifiers, references, and polymorphism, satis-
fies a subject reduction property. Our proof closely follows
[EST95]. We give only a proof sketch, due to space limita-
tions.

The type VZ.p\C represents any type of the form p[Z C) &]
under the constraints C[lz H Q], for any choice of qualifiers
&. Note that polymorphism only applies to the qualifiers
and not to the underlying types.

Following [OSW97], we introduce existential quantifica-
tion on constraint systems:

We begin by defining a store s as a finite mapping from
locations (i.e., variables) to values. We denote locations
by a as a reminder that they must be bound in the store.
The semantics assumes that all values are qualified, so that
a semantic value is a qualifier annotation and a syntactic
value (1 v). A program can always be rewritten in this form
by inserting I annotations. We define a reduction context
to flx the left-to-right ordering of evaluation:

C ::= {pl 5 pz} I {QI 5 Q2) I Cl u C2 I XC

R ::= [](Re](1v)R)ifRthenezelseesfi
1 let x = R in e2 ni] Q ref R
(!R)R:=eIQa:=RIIRIRIl

Note that we can lift existential quantjfication to the top-
level by renaming variables. If S[i2 I+ Q] is a solution of C,
then S is a solution of XC. Intuitively, existential quan-
tification binds purely local qualifier variables (see below).

As is standard in let-style polymorphism [Mi178], we
restrict the introduction of polymorphic types to let-
expressions. Due to well-known problems with mixing up-
dateable references and polymorphism, we only allow syn-
tactic values (i.e., functions in C) to be polymorphic [Wri95].
We extend the qualified type inference system to introduce
and eliminate polymorphic types:

We give single-step operational semantics for the execu-
tion of a program in Figure 5. A configuration (s, e) is a pair
where s represents the store and e represents the current re-
dex. We assume that all values are qualified. We extend
typings to configurations:

Definition 3 (Store Typing) We write A I- (s,e) : p; C
if both of the following hold:

1. AFe:p;C

A I- v : pl; Cl A[% * Vii.pl\C~] I- e2 : pz; CZ
it not free in A

A I- let z = TV in er ni : p; (3rZ.C1) U C2
(Let,)

2. For all a E dam(s), A(a) = Q. ref(po) and A I- s(a) :
pa; c.

The first condition guarantees that e has the right type, and
the second condition guarantees that the typing of the store
is consistent with the values in the store.

A(z) = VR.p\C
C

A t- 2 : p[Z c-) Q]; C[Z I-+ Q] W’)

In (Let,), we bind rZ before adding Ci to the constraints
generated by e2 so the purely local Iz can be renamed freely
without changing the conclusion of the rule. This matches
the intuition that the Z are local to the body of the let, and
also allows for a relatively simple proof of soundness. See
[EST951 for m alternate approach.

Polymorphism solves the problem with C’s monomorphic
type system that was outlined in the introduction. Consider
the following code fragment:

1 let id = Xx.x in
2 let y = id(ref 1) in
3 let z = id(const ref 1) in

. . .
ni ni ni

We first derive that Xx.x has type I (IE~ Q+ + K= cr,). Then
we apply the rule (Let,) to give id the polymorphic type
VK~.I (K~ oz + n, a,)\@. Now when we apply id in lines 2
and 3, we can use rule (Var’) to instantiate id with two sep-
arate sets of qualifiers, and so y can have type I ref(l int)
even though z must have type const ref(l id).

Lemma 1 If A I- e : p; C and 5’ is a substitution such that
SC is satisfiable, then SA I- e : Sp; SC.

Proof: By induction on the derivation of A !- e : p; C.
Since SC is satisfiable all subsets of the constraints SC are
satisfiable. The only interesting case is in (Let,,). In this
case, we first rewrite the proof of A l- e : p; C so that none
of the variables rZ are changed by S; we can do so because
the Z are bound by an existential quantifier in the conclusion
of (Let,). 0

Theorem 1 (Subject Reduction) If A I- (s,e) : p;C
and (s,e) + (s’,e’), then there exists an A’ such that
A’ldo,,,(~) = A and A’ I- (s’, e’) : p; C’ where C’ E C.

Proof: By induction on the structure of e. In the case of
(Let,,), we need to show that we can give ez[x t) u] the same
type as let 2 = v in e2 ni. We have A I- v : pl; Q. In the
typing proof A[x c) VZ.pl\C1] I- e2 : ~2; C2, at each occur-
rence of x in ea we applied (Var’) with some substitution S
on Z. By Lemma 1 we have A I- v : Spl; SCI, so we can
replace x by v and prove the same judgment. 0

Next we observe that stuck expressions (expressions that
are not values but for which no reduction applies [WF94])
do not typecheck, which is trivial to prove. Then we can
show

Corollary 1 (Soundness) If 0 I- e : p; C, then either e is
a value or e diverges.

198

l

b,R[Vz ~)lhl) + (&a~2 4) 12 Eh

(4 ml 02 VII) + b, Wl 4) 12 Eh

(s, R[if (I TX) then e2 else es f i]) + (s, R[ez]) n # 0
(s, R[if (I 0) then e2 else es f i]) + (s, R[es])

(s, R[(Z Xs.el) 4) -+ (8, We1 b ++ 41)
(s, R[let z = 2) in e2 nil) + (s, R[e2[2 I+ v]])

(s, R[l ref v]) + (s[a I-+ v], R[1 a]) a fresh
(3, RW 41) -+ (ST %+)I) a E dam(s)

(s, R[(l a) := v]) + (s[a I+ u], R[I ()I) a E dam(s)

Figure 5: Operational Semantics

4 Const Inference

In this section we describe a const-inference system for C
that takes an entire C program and infers the maximum
number of consts that can be syntactically present in the
program. Such a system relieves the programmer of the
burden of annotating all possible const locations. Instead
the programmer can annotate the most important consts
and use the inference to determine the constness of the re-
maining variables and parameters. Furthermore, our exper-
iments show that the polymorphic qualifier system allows
more const annotations than the C type system, which is
monomorphic.

4.1 C Types

C types already contain qualifiers, hence our implementation
does not use the sp operator defined in Section 3.1. How-
ever, our system does need to translate the C types into the
form described in Section 2.4. All variables in C refer to
updateable memory locations. In the terminology of this
paper, they are all ref types. When C variables appear in
r-positions, they are automatically dereferenced. For exam-
ple, consider the following code:

int x;
const. int y;
x = y;

In our example language, this program is written x := ! y.
Omitting the qualifiers on int, let A = 0[x I+
I ref(int), y I-+ const rt$(int)] as can be derived from the
definitions of x and y. Then we can type this program in
our system as follows:

A I- y : const ref(int)
A t- x : I ref(int) At- !y: int

I- I E xonst
A!-x := !y : unit

Even though in the C type it appears that the const is
associated with the int, in fact const qualifies the ref con-
structor of y. Hence y’s constness does not affect x.

We can explain this systematically by giving a transla-
tion 0 from the C types to ref types. For the sake of sim-
plicity we only discuss pointer and integer types. Let the C
types be given by the grammar

C@p ::= & int I& ptr(C!&p)

We define the mapping 0 : Clj~p + Ql$p as follows:

~(C%P) = Q’ M(p)
where (Q’, p) = 8’(CQp)

e’(Q int) = (&,I int)
e’(Q MC%)) = (Q, (Q’ d(d))

where (Q’, p) = e’(C&p)

Intuitively, the qualified type corresponding to a C type has
one extra ref on the outside, and the const qualifiers have
shifted up one level in the type. Note that these are the
types of Z-values, and the outermost ref should be removed
to get the type of an r-value.

The advantage of this transformation is that we can use
the standard subtyping rules for ref. Consider the following
example:

int *x;
const int *y;
y = x;

In the C type system, we are assigning x, which has type
ptr(int), to y, which has type ptr(const int), thus it ap-
pears that we are using a non-standard subtyping rule, be-
cause pointers are updateable. However, when we translate
this into our system, we see that the T-value x has type
I ref(int), and the Z-value y has type I ref(const ref(int)).
In order to assign x to y, we must show I- I ref(int) 5
const ref(int) which is true in the standard subtyping rela-
tion we use.

4.2 Other Considerations

Ultimately we would like the analysis result to be the text
of the original C program with some extra const qualifiers
inserted. Thus we place some restrictions on the types we
infer. In C different variables with the same struct type
share the declaration of their fields. Thus in our system, if
a and b are declared with the same struct type, we only
allow a and b to diier on the outermost (top-level) qualifier;
the qualifiers on their fields must be identical. For example,
consider the following code:

struct st { int x; 3;
struct st a, b;
a = b;

The assignment a-b is equivalent to a.x = b.x. TO satisfy
the type rules, it is sufficient for the r-type of b.x to be a
subtype of the r-type of a. x. However, because a. x and b. x
share the field annotation in struct st, we require them to

199

be equal. Note that the top-level qualifier attached to the
ref constructors of the l-types of a and b can be distinct from
each other. For example, although a must be a non-const
ref, we do not require that b be non-const.

On the other hand, we treat typedefs as macro-
expansions, e.g., in

c and d do not share any qualifiers.
One of the complications of analyzing real programs is

that real programs use libraries, the code for which is of-
ten either unavailable or written in another language. For
any undefined functions, we make the most conservative as-
sumption possible: We treat any parameters not declared
const as non-const. In general library functions are anno-
tated with as many consts as possible, and so lack of const
does mean can’t-be-const.

C contains many different ways to defeat the type sys-
tem, of which the most obvious is casting. For explicit casts
we choose to lose any association between the value being
cast and the resulting type. For implicit casts we retain as
much information as possible.

Another way to defeat the type system is to use variable-
length argument lists, or call a function with the wrong num-
ber of arguments. Both cases happen in practice; we simply
ignore extra arguments.

4.3 Polymorphic Inference

Recall that we allow standard let-style polymorphism, in
which polymorphic expressions are explicitly marked. Since
a C program is made up of a set of possibly mutually-
recursive functions, we need to syntactically analyze the pro-
gram to find the let blocks.

The FDG exactly captures the implicit structure of func-
tion definitions. There is an edge from f to g if g must be
type checked before f, and the strongly-connected compo-
nents of the FDG are the sets of mutually-recursive func-
tions.

To apply the polymorphic inference to a C program,
we first construct the FDG. Then we traverse the strongly-
connected components of the FDG in reverse depth-first or-
der (the traversal can be computed in time linear in the size
of the graph [CLR90]). We analyze each set of mutually
recursive functions monomorphically and then we apply the
rule for quantification. After we reach the root node of the
FDG, we analyze any global variable definitions.

More work is required after type inference to measure the
results. We want to know how many formal parameters can
be polymorphic, i.e., either const or non-const. However,
in general a C function may refer to global variables, so a C
function’s polymorphic type is not closed.

The types of global variables are closed once we have an-
alyzed the whole program. A straightforward post-analysis
pass combines this information with the types inferred dur-
ing the FDG traversal to compute the results.

We would prefer to use polymorphic recursion rather
than let-style polymorphism to avoid working with the FDG,
but BANE [AFFS98], the toolkit used to conduct our exper-
iments, did not support polymorphic recursion when this
work began. Because the qualifier lattice is finite and qual-
ifiers do not change the type structure, the computation of
polymorphic recursive types is decidable and in fact should
be very efficient. We have recently learned that Jakob Rehof
has written a polymorphic recursive type inference system
for C++ [Reh99].

4.4 Experiments

We perform const inference using the rules for const out-
lined in Section 2.4: Table 1 lists the set of benchmarks we
used to test our analysis. We purposely selected programs
that show a significant effort to use const, rather than those
that use it in only a few places.

Several of these “programs” are actually collections of
programs that share a common code base. We analyzed
each set of programs at once. This occasionally required
renaming certain functions that were defined in several files
to be distinct.

For each benchmark, we measured the number of inter-
esting consts (see below) inferred by the monomorphic and
the polymorphic version of our analysis. For any given ref
type, there are three possible results that our analysis can
infer: It can decide that the ref

1. must be const,

2. must not be const, or

3. could be either.

If the analysis inferred that something not marked as const
must in fact be const, this would indicate a type error. Since
all of our benchmarks are correct C programs, all of the
possible additional consts detected must be from (3). The
total number of possible consts is the sum of (1) and (3).
Note that the number of possible consts does not depend on
the source-level const annotations, since removing a const
merely shifts the annotation on a reftype from (1) to (3).

Name Lines Description
woman-3.0a 1496 Replacement for man package
patch-2.5 5303 Apply a diff file to an original
m4-1.4 7741 Unix macro preprocessor
diffutils-2.7 8741 Collection of utilities for diffig files
ssh-1.2.264 18620 Secure shell
uucp- 1.04 36913 Unix to unix copy package

Table 1: Benchmarks for const inference

1 Name] Compile time (s)] Mono time (s)] Poly time (s)] Declared] Mono] Poly] Total possible
urnman-? na I ARA I x91 I RQl I Fin I fi7 I 72 I cl.5 1

,.Y-- V.“.. *.- * .,.“_ -.1-

patch-2.5 16.98 18.70 33.43 84 ii 10; 148
m4-1.4 19.48 36.81 64.43 88 249 262 370
diffitils-2.7 24.46 35.70 57.34 153 209 243 372
ssh-1.2.26 84.55 101.90 174.28 147 316 347 547
uucp-1.04 113.75 177.71 457.16 433 1116 1299 1773

Table 2: Number of inferred possibly const positions for benchmarks

We only counted the number of “interesting” consts
placed on arguments and results of defined functions. Recall
that consts can only be placed on pointers and that argu-
ments are passed by value, so the function int f oo (int x,
int *y) has only one interesting location where const can
go, namely on the contents of y, which is itself a ref.

Figure 6 shows our results, which are tabulated in Ta-
ble 2. Our current implementation uses BANE [AFFS98],
a framework for constructing constraint-based analyses, for
the qualifier inference. BANE handles constraint representa-
tion and solution, and our analysis tool generates constraints
and interprets the results.

The first column of measurements gives the compile time.
The next two columns give the running time (average of five)
for the monomorphic and polymorphic const-inference. We
do not include the parsing time. Note that the inference
scales roughly linearly with the program size, and that the
polymorphic inference takes at most 3 times longer than the
monomorphic inference. Our implementation uses a generic
set constraint engine to solve qualifier constraints, and we
expect substantial speedups would be achieved with a frame-
work specialized to the qualifier lattice.

The next column lists the number of interesting consts
that were declared in the program. The right-most column
indicates the total number of places that are syntactically
allowed to have a const qualifier (according to our definition
of interesting).

The Mono and Poly columns list the results of the
monomorphic and polymorphic inference algorithms, respec-
tively. As mentioned previously, any additional qualifiers
inferred can be either const or non-const (these correspond
to unconstrained qualifier variables). For the monomorphic
type system we can make all of these positions const and
still have a type correct program. For the polymorphic type
system we need to leave these as unconstrained variables,
since they may be required to be const or non-const in

4The ssh distribution also includes a compression library zlib and
the GNU MP library (arbitrary precision arithmetic). We treated
both of these as unanalyzable libraries; zlib contains certain struc-
tures that are inconsistently defined across files, and the GNU MP
library contains inlined assembly code.

different contexts.
The measurements show that many more consts can be

inferred than are typically present in a program. For some
programs the results are quite dramatic, notably for uucp-
1.04, which can have more than 2.5 times more consts than
are actually present. Recall these are already programs in
which some effort was made to use const.

For this set of benchmarks polymorphic analysis allows 5-
16% more consts than monomorphic analysis. These results
show that qualifier polymorphism is both useful and already
latent in C programs, although we believe that most of the
benefit for polymorphism comes from allowing fewer type
casts rather than more consts.

Our experiments show that an automated inference tool
makes it much easier for a programmer to fully use const
annotations to express information about the side-effects of
functions. They also show that polymorphism allows more
const annotations than the monomorphic C type system
without casts.

5 Related Work

There are three threads of related work: examples of sys-
tems that use type qualifiers, frameworks related to type
qualifiers, and other techniques for checking programmer-
specified invariants.

We have already mentioned the example qualifier sys-
tems of const from ANSI C [KR88], Evans’s lclint [Eva96],
and static and dynamic annotations from binding-time
analysis [DHM95]. Two other examples are the secure infor-
mation flow system of [VS97], which annotates types with
high- and low-security qualifiers, and the X-calculus with
trust annotations of [0P97]. [0P97] suggests an extension
of their system to multiple levels of trust, which is similar
to our idea of a lattice of type qualifiers.

Another example comes from Titanium [ySP+98], a
Java-based SPMD programming language. Titanium uses
the qualifier local to distinguish pointers to local memory,
which can be accessed with a simple load instruction, from
pointers to non-local memory, which must be accessed with
a network operation. A pointer annotated with local must

201

be local; a pointer not annotated with local may either be
local or non-local. In Titanium, local annotations are crit-
ical because they allow the compiler to remove expensive
run-time tests.

Several other researchers have noted that type qualifiers
are an important tool for program analysis. [So1951 gives a
framework for understanding a particular family of related
analyses as type annotation (qualifier) systems. [ABHR99]
describes the Dependency Core Calculus (DCC) and pro-
vides translations into DCC from several dependency-based
type qualifier systems such as [VS97]. DCC is one example
of a calculus based on monads. Recent work [Kie98, Wad981
has explored the connection between monads and effect sys-
tems [LG88]. Some effect systems can also be expressed as
type qualifier systems. However, the exact connection be-
tween monads, effect systems, and type qualifiers is unclear.

Other frameworks choose a different design point by pro-
viding more powerful annotation languages. For example,
Klarlund and Schwartzbach’s graph types [KS931 allow pro-
grammers to specify detailed shape invariants on data struc-
tures. Another approach is the Extended Static Checking
system [Det96, LN98], which uses sophisticated theorem-
proving techniques that allow the programmer to check in-
variants. The advantage of such systems is that the invari-
ants are much more precise than in a type qualifier system.
However, specifying such invariants requires more effort and
sophistication on the programmer’s part.

6 Future Work

In the framework presented in this paper, types remain
static throughout the source program, even though the val-
ues stored in some locations may change through updates.
Indeed, as stated our framework cannot express the analysis
of Iclint, in which annotations on a given location may
vary at each program point.

One solution we are investigating is to assign each lo-
cation a distinct type at every program point and to add
subtyping constraints between the different types. For ex-
ample, suppose that x has type 71 before a non-branching
statement s and x has type 72 after s. Then if s does not
perform a strong update of x we add the constraint 71 5 72;
if s does strongly update x then we do not add this con-
straint. This technique allows a measure of flow sensitivity,
which may make type qualifiers more useful in certain ap-
plications.

Finally, an issue we have not addressed is the presen-
tation and specification of polymorphic function types. In
our system each polymorphic type also carries a set of con-
straints, and we currently do not have a notation for spec-
ifying constraints in the source language. Additionally, in
practice these constraint systems can be large and difficult
to interpret. Simplifying these constrained types for presen-
tation is an open research problem.

7 Conclusion

We believe that type qualifiers are a simple yet useful addi-
tion to standard type systems. We have presented a frame-
work for adding type qualifiers, qualifier annotations, and
qualifier assertions to an standard language, and we allow
types to be polymorphic in the type qualifiers. Our exper-
imental results show that for a set of benchmarks, many

more const qualifiers can be added than are present, even
though our benchmarks make significant use of const.

Acknowledgments

We would like to thank Daniel Weise, Henning Niss, Martin
Elsman, Zhendong Su, and the anonymous referees for their
helpful comments and suggestions.

References

[ABHR99] Martin Abadi, Anindya Banerjee, Nevin Heintse, and
Jon G. Riecke. A Core Calculus of Dependency.
In Pmceedinas of the 26th Annual ACM SIGPLAN-
SIGACT Sympo&m on Principles of Progmmming
Languages, pages 147-160, San Antonio, Texas, Jan-
uary 1999.

[AC961

[AFFS98]

[ASU88]

[CLRSO]

[Det96]

[DHM95]

[EST951

[Eva961

[Hen911

[HR97]

[ICF98]

Martin Abadi and Luca Cardelli. A Theory of Ob-
jects. Springer, 1996.
Alexander Aiken, Manuel Flhndrich, Jeffrey S. Fos-
ter, and Zhendong Su. A Toolkit for Constructing
Type- and Constraint-Based Program Analyses. In
Proceedings of the second International Workshop on
!&pcs in Compilation, Kyoto, Japan, March 1998.

Alfred V. Aho, Flavi Sethi, and Jeffrey D. Ullman.
Compilers: Principles, Techniques, and Tools. Addi-
son Wesley, 1988.
Thomas H. Cormen, Charles E. Leiserson, and
Ronald L. Ftivest. Introduction to Algorithms. Mc-
Graw Hill, 1990.

David L. Detlefs. An overview of the Extended Static
Checking system. In Proceedings of the First Work-
shop on Formal Methods in Software Pmcticc, pages
l-9, January 1996.
Dirk Dussart, Fritz Henglein, and Christian Mossin.
Polymorphic Recursion and Subtype Qualifications:
Polymorphic Binding-Time Analysis in Polynomial
Time. In Static Analysis, Second International Sym-
posium, number 983 in Lecture Notes in Computer
Science, pages 118-135, Glasgow, Scotland, Septem-
ber 1995. Springer-Verlag.
Jonathan Eifrig, Scott Smith, and Valery Trifonov.
Type Inference for Recursively Constrained Types
and its Application to OOP. In Mathematical Foun-
dations of Programming Semantics, Eleventh Annual
Conference, volume 1 of Electronic Notes in Theoret-
ical Computer Science. Elsevier, 1995.

David Evans. Static Detection of Dynamic Memory
Errors. In Proceedings of the 1996 ACM SIGPLAN
Conference on Programming Language Design and
Implementation, pages 44-53, Philadelphia, Pennsyl-
vania, May 1996.

Fritz Henglein. Efficient Type Inference for Higher-
Order Binding-Time Analysis. In J. Hughes, editor,
FPCA ‘91 Conference on Functional Pmgmmming
Languages and Computer Architecture, volume 523 of
Lecture Notes in Computer Science, pages 448-472,
Cambridge, MA, August 1991. Springer-Verlag.

Fkitz Henglein and Jakob Rehof. The Complexity of
Subtype Entailment for Simple Types. In Pmceed-
ings,- Twelfth Annual IEEE Symposium on Logic in
Computer Science, pages 352-361, Warsaw, Poland,
July 1997.

Pmcecdings of the thinl ACM SIGPLAN Intema-
tional Conference on finctional Progmmming, Bai-
timore, Maryland, September 1998.

202

[Jon921

[Kie98]

[KR88]

[KS931

[LG88]

[LN98]

Nag931

[Mi178]

[MitSl]

[MSS96]

[0P97]

[OSW97]

Pu4

[Reh99]

[So1951

[TT94]

[VS97]

Mark P. Jones. A theory of qualified types. In Bernd
Krieg-Briicker, editor, 4th European Symposium on
Progmmming, number 582 in Lecture Notes in Com-
puter Science, pages 287-306, Rennes, France, Febru-
ary 1992. Springer-Verlag.

Richard Kieburtz. Taming Effects with Monadic Typ-
ing. In ICFP’98 [ICF98], pages 51-62.
Brian W. Kernighan and Dennis M. Ritchie. The C
Programming Language. Prentice Hall, 2nd edition,
1988.
Nils Klarlund and Michael I. Schwartzback. Graph
Types. In Proceedings of the 20th Annual ACM
SIGPLA N-SIGA CT Sumvosium on Princiules of
Progmmming Languages, pages 196-205, Charleston;
South Carolina, January 1993.

John M. Lucassen and David K. Gifford. Polymorphic
Effect Systems. In Proceedings of the 15th Annual
A CM SIGPLA N-SIGA CT Symposium on Principles
of Progmmming Languages, pages 47-57, San Diego,
California, January 1988.

K. Rustan M. Leino and Greg Nelson. An Extended
Static Checker for Modula-3. In Compiler Construc-
tion: 7th International Conference, volume 1383 of
Lecture Notes in Computer Science, pages 302-305,
April 1998.
Steve Maguire. Writing Solid Code. Microsoft Press,
1993.

Robin Milner. A Theory of Type Polymorphism in
Programming. Journal of Computer and System Sci-
ences, 17:348-375, 1978.
John C. Mitchell. Type inference with simple sub-
types. Joumol of Functional Programming, 1(3):245-
285, July 1991.

David R. Musser, Atul Saini, and Alexander
Stepanov. STL fitoriol and Reference Guide.
Addison-Wesley Publishing Company, 1996.

Peter 0rbeek and Jens Palsberg. Trust in the
X-calculus. Journal of Functional Progmmming,
3(2):75-85, 1997.

Martin Odersky, Martin Sulzmann, and Martin Wehr.
Type Inference with Constrained Types. In Benjamin
Pierce, editor, Proceedings of the 4th Intemationol
Workshop on Foundations of Object-Oriented Lon-
guoges, January 1997.

Pure Atria. Purify: Fast detection of memory leaks
and access errors.

Jakob Rehof. Personal communication, January 1999.

Kirsten Lsckner Solberg. Annototed Qpe Systems
for Progmm Analysis. PhD thesis, Aarhus University,
Denmark, Computer Science Department, November
1995.

Mads Tofte and Jean-Pierre Talpin. Implementa-
tion of the Typed Call-by-Value X-Calculus using a
Stack of Regions. In Proceedings of the 21st Annual
A CM SIGPLA N-SIGA CT Symposium on Principles
of Programming Languages, pages 188-201, Portland,
Oregon, January 1994.

Dennis Volpano and Geoffrey Smith. A Type-Based
Approach to Program Security. In Michel Bidoit
and Max Dauchet, editors, Theory and Pmctice of
Software Development, 7th International Joint Con-
ference, volume 1214 of Lecture Notes in Computer
Science, pages 607-621, Lille, France, April 1997.
Springer-Verlag.

[Wad981 Philip Wadler. The Marriage of Effects and Monads.
In ICFP’98 [ICF98], pages 63-74.

[WF94] Andrew K. Wright and Matthias Felleisen. A Syntac-
tic Approach to Type Soundness. Information and
Computation, 115(1):38-94, 1994.

[Wri95] Andrew K. Wright. Simple Imperative Polymor-
phism. In Lisp and Symbolic Computation 8, vol-
ume 4, pages 343-356, 1995.

[YSP+98] K. Yelick, L. Semenzato, G. Pike, C. Miyamoto,
B. Liblit, A. Krishnamurthy, P. Hilfinger, S. Graham,
D. Gay, P. Colella, and A. Aiken. Titanium: A High-
Performance Java Dialect. In ACM 1998 Workshop
on Java for High-Performonce Network Computing,
February 1998.

203

