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Abstract 

We describe a framework for adding type qualifiers to a lan- 
guage. Type qualifiers encode a simple but highly useful 
form of subtyping. Our framework extends standard type 
rules to model the flow of qualifiers through a program, 
where each qualifier or set of qualifiers comes with addi- 
tional rules that capture its semantics. Our framework al- 
lows types to be polymorphic in the type qualifiers. We 
present a cons%inference system for C as an example appli- 
cation of the framework. We show that for a set of real C 
programs, many more consts can be used than are actually 
present in the original code. 

1 Introduction 

Programmers know strong invariants about their programs, 
and it is widely accepted by practitioners that such invari- 
ants should be automatically, statically checked to the ex- 
tent possible [Mag93]. However, except for static type sys- 
tems, modern programming languages provide little or no 
support for expressing such invariants. In our view, the 
problem is not a lack of proposals for expressing invariants; 
the research community, and especially the verification com- 
munity, has proposed many mechanisms for specifying and 
proving properties of programs. Bather, the problem lies in 
gaining widespread acceptance in practice. A central issue 
is what sort of invariants programmers would be willing to 
write down. 

In this paper we consciously seek a conservative frame- 
work that minimizes the unfamiliar machinery programmers 
must learn while still allowing interesting program invariants 
to be expressed and checked. One kind of programming an- 
notation that is widely used is a type qualifier. 

Type qualifiers are easy to understand, yet they can ex- 
press strong invariants. The type system guarantees that in 
every program execution the semantic properties captured 
by the qualifier annotations are maintained. This is in con- 
trast to dynamic invariant checking (e.g., assert macros or 
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Purify [Purl), which test for properties in a particular pro- 
gram execution. 

A canonical example of a type qualifier from the C world 
is the ANSI C qualifier const. A variable with a type an- 
notated with const can be initialized but not updated.’ A 
primary use of const is annotating pointer-valued function 
parameters as not being updated by the function. Not only 
is this information useful to a caller of the function, but it 
is automatically verified by the compiler (up to casting). 

Another example is Evans’s lclint [Eva96], which intro- 
duces a large number of additional qualifier-like annotations 
to C as an aid to debugging memory usage errors. One 
such annotation is nonnull, which indicates that a pointer 
value must not be null. Evans found that adding such an- 
notations greatly increased compile-time detection of null 
pointer dereferences [Eva96]. Although it is not a type- 
based system, we believe that annotations like lclint’s can 
be expressed naturally as type qualifiers in our framework. 

Yet another example of type qualifiers comes from 
binding-time analysis, which is used in partial evaluation 
systems [HenSl, DHM95]. Binding-time analysis infers 
whether values are known at compile time (the qualifier 
static) or may not be known until run time (the quali- 
fier dynamic) by specializing the program with respect to an 
initial input. 

There are also many other examples of type qualifiers in 
the literature. Each of the cited examples adds particular 
type qualifiers for a specific application. This paper presents 
a framework for adding new, user-specified type qualifiers to 
a language in a general way. Our framework also extends the 
standard type system to perform qualifier inference, which 
propagates programmer-supplied annotations through the 
program and checks them. Such a system gives the pro- 
grammer more lmplete information about qualifiers and 
makes qualifiers more convenient to use than a pure check- 
ing system. 

The main contributions of the paper are 

l We show that it is straightforward to parameterize a 
language by a set of type qualifiers and inference rules 
for checking conditions on those qualifiers. In particu- 
lar, the changes to the lexing, parsing, and type check- 
ing (see below) phases of a compiler are minimal. We 
believe it would be realistic to incorporate our proposal 
into software engineering to018 for any typed language. 

‘C allows type casts to remove coastness, but the result is imple- 
mentation dependent [KR88]. 
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l We show that the handling of type qualifiers can be 
separated from the standard type system of the lan- 
guage. That is, while the augmented type system in- 
cludes rules for manipulating and checking qualifiers, 
in fact the computation of qualifiers can be isolated in 
a separate phase after standard typechecking has been 
performed. This factorization is similar to that of re- 
gion inference [TT94]. 

l We introduce a natural notion of qualifier polymor- 
phism that allows types to be polymorphic in their 
qualifiers. We present examples from existing C pro- 
grams to show that qualifier polymorphism is useful 
and in fact necessary in some situations. 

l We present experimental evidence from a prototype 
qualifier inference system. For this study, we exam- 
ine the use of the qualifier const on a set of C bench- 
marks. We show that even in cases where programmers 
have apparently tried to systematically mark variables 
as const, monomorphic qualifier inference is able to in- 
fer many additional variables as const. Furthermore, 
polymorphic qualifier inference finds more const vari- 
ables than monomorphic inference. This study shows 
both that qualifier inference is practical and useful, 
even for existing qualifiers and programs. 

The technical observation behind our framework is that a 
type qualifier q introduces a simple form of subtyping: For 
all types r, either r 5 q 7 or q r 5 7. Here, as through 
the rest of the paper, we write qualifiers in prefix notation, 
so q r represents standard type r qualified by q. We illus- 
trate the subtyping relationship using the examples given 
above. In C, non-const I-values can be promoted to const 
I-values, but not vice-versa. We capture this formally by 
saying that T 5 const 7 for any type r. In Evans’s system, 
the set of non-null pointers is a subset of the set of all point- 
ers, which is expressed as nonnull T 5 r. In binding time 
analysis values may be promoted from static to dynamic. 
Since static and dynamic are dual notions, we can choose 
to write static r 5 T or r -< dynamic r, depending on 
which qualifier name we regard as the canonical one. 

Our framework extends a language with a set of standard 
types and standard type rules to a qualified type system as 
follows.’ The user defines a set of n type qualifiers 91, . . . , q,, 
and indicates the subtyping relation for each (whether qi r 5 
r or r 5 qi r for any standard type 7). Each level of a 
standard type may be annotated with a set of qualifiers, 
e.g., if rqf(int) is a standard type, then q1 ref(q2 int) is a 
qualified type, where q1 qualifies the ref and q2 qualifies the 
int. We extend the standard type system to infer qualified 
types. 

The polymorphic version of our system requires polymor- 
phic constrained types to capture bounds on polymorphic 
qualifier variables. This form of polymorphic types involves 
only relatively simple constraints that can be solved with 
very efficient algorithms [HR97]. 

Each qualifier comes with rules that describe well-formed 
types and how qualifiers interact with the operations in 
the language. These rules are supplied by the user and 
may be nearly arbitrary (see Section 2.4). For example, 
a rule for const adds a qualifier test to require that the left- 
hand side of an assignment is non-const. An example of a 

‘Apologies to Mark P. Jones for overloading the term qualified 
types [Jon92]. 

well-formedness condition comes from binding time analysis: 
Nothing dynamic may appear within a value that is static. 
Thus, a type such as static (dynamic Q + dynamic p) is 
not well-formed.3 

Because our framework is parameterized by the set of 
qualifiers, we must extend not only the types, but also 
the source language. We add both qualifier annotations, 
which introduce qualifiers into types, and qualifier asser- 
tions, which enforce checks on the qualifiers of a qualified 
type. These extensions allow the programmer to express the 
invariants that are to be checked by the qualifier inference 
rules. 

We conclude this section with a brief illustration of the 
need for qualifier polymorphism. Qualifier polymorphism 
solves a problem with const familiar to C and C++ pro- 
grammers. One of the more awkward consequences of the 
standard (monomorphic) C++ type system appears in the 
Standard Template Library (STL) [MSS96] for C++. STL 
must always explicitly provide two sets of operations, one 
for constant data structures and one for non-constant data 
structures. For illustration, consider the following pair of C 
functions: 

typedef const int ci; 
int *idl(int *x) f return x; > 
ci *id2(ci *x) C return x; 1 

C programmers would like to have only one copy of this 
function, since both versions behave identically and in fact 
compile to the same code. Unfortunately we need both. A 
pointer to a constant cannot be passed to id1 without a 
cast. A pointer to a non-constant can be passed to id2, but 
then the return value will be const. In the language of type 
theory, this difficulty occurs because the identity function 
has type &~a + IE(Y, with qualifier set 6 appearing both co- 
and contravariantly. 

In part because of the lack of const polymorphism in 
C and C++, const is often either not used, or function 
results are deliberately cast to non-const. For example, the 
standard library function strchr takes a const char *s as 
a parameter but returns a char * pointing somewhere in s. 
By adding polymorphism, we allow const to be used more 
easily without resorting to casting. 

The rest of this paper is organized as follows. Section 2 
describes our framework in detail, including the rules for 
const. Section 3 discusses type inference, qualifier poly- 
morphism, and soundness. Section 4 describes our const- 
inference system. Section 5 discusses related work, Section 6 
suggests future directions, and Section 7 concludes. 

2 Qualified Type Systems 

For our purposes, types are terms over a set of type con- 
structors C and type variables TVar. Program variables are 
denoted by PVar. Each type constructor c has an arity a(c). 
We denote the set of types by C&p: 

%P ::= a I C(QP,, *. . > IzlP,(,)) 

where (Y E TVar and c E C. A type environment A is a map 
A : PVar + Typ. We abbreviate the vector (~1,. . . , z,) by 

‘Many descriptions of binding-time analysis omit the standard 
types. In such a system, this type would be written static (dynamic -+ 
dynamic). 
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Figure 1: Source language 
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Figure 2: Example qualifier lattice 

3. We define 

A[&, q(y) = $Y) Y @ lxl,... ,xn) 
y = xj 

where the zi are distinct. 
We demonstrate our framework by adding type qualifiers 

to the functional language shown in Figure 1. Using the C 
convention, we interpret 0 in the guard of an if statement 
as false and any non-zero value as true. Here we distinguish 
syntactic values v (which can be evaluated without compu- 
tation) from general expressions e. We use a call-by-value 
language, though the addition of qualifiers works equally 
well for call-by-name languages. 

For this language, C = {int, +} with arities 0 and 2, re- 
spectively, and the type system is that of the simply-typed 
lambda calculus. Although this language is convenient for 
demonstrating the type checking system, some qualifiers 
(e.g., const) are not meaningful in it. In Section 2.4, we 
add updateable references (in C terminology, Z-values) to our 
language and give the additional inference rules for const. 

The user supplies a set of qualifiers q1 , . . . , q,, , annotated 
to indicate the subtyping relation. 

Definition 1 A type qualifier q is positive (negative) if r 3 
q T (q 7 5 T) for any type 7. 

For convenience we denote the absence of qualifier q by I, 
if q is positive or T, if q is negative. 

We extend subtyping to sets of qualifiers by defining a 
qualifier lattice. 

Definition 2 (Qualifier lattice) Each positive qualifier q 
defines a two-point lattice L, = I, E q. Each negative 

P ..- ..- QT 
::= a 1 int I (pl + P2) 

9’ ::= Kll 

Figure 3: Type language with qualifiers 

qualifier q defines a two-point lattice L, = q & T,. The 
qualifier lattice L is defined by L = Lql x . . . x L,, . We 
write I and T for the bottom and top elements of L. 

Clearly it is unnecessary to model both positive and neg- 
ative qualifiers, since they are dual notions. Instead of using 
a negative qualifier q, we can give T, a name and use it as 
a positive qualifier, rearranging the type inference rules ap- 
propriately. However, as it is often more intuitive to think 
of certain qualifiers as being positive or negative, we allow 
both. 

Figure 2 shows the qualifier lattice for the positive quali- 
fiers const and dynamic and the negative qualifier nonzero. 
A nonzero qualifier on an integer indicates that the integer 
cannot be zero. Instead of writing I, or T, in the picture 
we have simply omitted the name q. (static is just another 
name for Idmc, and we have omitted it.) Notice that mov- 
ing up the lattice adds positive qualifiers or removes negative 
qualifiers. 

We use C for the ordering on L, and I-I and 
U for meet and join. For a positive (negative) 
qualifier qj , we denote by -qi the lattice element 
U-n,... , J-Pi-1 3 ‘ei > Tqi+l> * * * , Tq, ) (for negative quali- 
fiers (IpI, . . . > hi-1 t Tqi 1 hi+-1 1.. . > &,))I where 4j ad 
Tqj are the minimal and maximal elements of Lqj. 

This general formulation allows any combination of qual- 
ifiers to appear on any type. In practice, however, qualifiers 
need not be orthogonal. The analysis designer may specify 
inference rules that depend on multiple qualifiers and well- 
formedness conditions that prohibit certain combinations of 
qualifiers. 

2.1 Qualified Types 

The next step is to add qualifiers to the standard type sys- 
tem. We define a new set of types Ql$p, the qualified types, 
by 

&C&p ::= Q r 

Q’ 
::= Q I c(Q!&P~,. . . , Q!&P,(,$ c E C 
::= Ic 1 I 

where IE E QVars, the set of variables that range over type 
qualifiers, and the I are elements of the lattice L. The qual- 
ified types are just the standard types annotated with sets 
of qualifiers, i.e., lattice elements or qualifier variables. No- 
tice that we do not need variables that range over qualified 
types, since the combination of a qualifier variable and a 
type variable K a serves the same purpose. 

Figure 3 shows the qualified types for our example 
language. To avoid ambiguity, we parenthesize function 
types. Example qualified types are dynamic nonzero int and 
dynamic (const (Y + n p). Notice that we allow qualifiers 
to appear on all levels of a type, even though a particular 
qualifier may only be associated with certain standard types 
(e.g., const only applies to updateable references). 
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We now extend the C relation to a subtyping relation 
4 on &tip. We create a set of subtyping rules that give 
judgments k p 5 p’, meaning that p is a subtype of p’. 
We abbreviate k {p 5 p’, p’ j p} by I- p = p’. The 
system also uses judgments of the form t- Q _C Q’, which 
is valid if & E Q’ holds in the lattice. Figure 4a contains 
the subtyping rules for our example language. 

The choice of subtyping rules depends on the meanings 
of the type constructors C. In general, for any c E C the 
rule 

+Q&Q’ 
k pi = pi i E [l..n] 

~Qcpl,... rpn 5Q I I I c PI,... >P,) 

is sound. Indeed, this is the standard choice if c constructs 
updateable references (see Section 2.4). 

2.2 Qualifier Annotations and Qualifier 
Assertions 

Now we wish to extend the standard type system to infer 
qualified types. Our construction should apply to any set of 
type qualifiers. Thus we immediately encounter a problem, 
because when constructing a qualified type we do not know 
how to choose the top-level qualifiers, i.e., the qualifiers on 
the outermost constructor. 

We divorce this issue from the type system by adding 
qualifier annotations to the source language. Initially we as- 
sume that any new top-level qualifier is 1. We then allow 
user annotations that change the top-level qualifier mono- 
tonically. Dually, we also add .qualifier assertions to the 
source language that allow the user to check the top-level 
qualifier on a type. While we also allow extra constraints on 
the qualifiers to be added to the type rules, qualifier asser- 
tions are a simple way to test invariants, and their use does 
not require extensive knowledge of type systems. 

For our example language, we add productions for anno- 
tations and assertions: 

e : j= j;, 

e 

Here qualifier annotation 1 e tells the type checker that 1 e’s 
top-level qualifier should be at least 1. Note that the qual- 
ifier on an abstraction qualifies the function type itself and 
not the type of the parameter. The qualifier assertion ell 
requires that if Qe is e’s top-level qualifier, then Qe E 1. 

2.3 Qualified Type Systems 

The final step is to extend the original type checking system 
to handle qualified types. Intuitively this extension should 
be natural, in the sense that adding type qualifiers should 
not modify the structure of inferred types but only their 
qualifiers. We must also extend the type system with a sub- 
sumption rule, to allow subtyping, and rules for qualifier as- 
sertions and annotations. The resulting qualified type system 
for our example language is shown in Figure 4b. Judgments 
are of the form A l- e : p, meaning that in the type envi- 
ronment A expression e has qualified type p. The system 
in Figure 4 is the standard subtyping system (see [MitSl]) 
specialized to our application. Section 3.1 contains a formal 
description of the construction of a qualified type system 
from a standard type system. 

In general each qualifier comes with a set of rules de- 
scribing how the qualifier interacts with the operations in 
the language. Notice in Figure 4b that the antecedents of 
certain rules, e.g., (App), match the types of subexpres- 
sions against arbitrary qualifiers Q. We allow the qualifier 
designer to restrict these Q to enforce the semantics of par- 
ticular qualifiers. In Section 2.4 we show how a type rule for 
assignment is modified for the const qualifier. 

We define two pairs of transformation functions between 
standard and qualified types and expressions. For a qualified 
type p E QZ$p, we define strip(p) E Typ to be p with all 
the qualifiers removed. Analogously, for an expression e in 
the annotated language, strip(e) is e without any qualifier 
annotations or assertions. 

In the other direction, for a standard type r E !@p we 
define 1(r) to be the qualified type p with the same type 
structure as r and all qualifiers set to 1. Analogously, for 
an expression e in the original language, I(e) is the corre- 
sponding expression in the annotated language with only I 
qualifier annotations and no qualifier assertions. 

Observation 1 Let l-s be the judgment relation of the 
type system of the simply-typed lambda calculus, and let 
I- be the judgment relation of the type system given in Fig- 
ure 4. Then 

l If 0 ks e : T, then 0 I- I(e) : 1(r). 

l If 0 I- e’ : p, then 0 i-s strip(e’) : strip(p). 

This captures our intuitive requirement that the type qual- 
ifiers do not modify the underlying type structure. 

Even without any additional rules on qualifiers, the qual- 
ified type system can be quite useful. Perhaps the most ob- 
vious kind of type qualifier to add is one that captures a 
property of a data structure. For example, we may want to 
distinguish between sorted lists and possibly unsorted lists. 
We add a negative type qualifier sorted and annotate all of 
our sorting functions so they return sorted lists. (We do not 
attempt to verify that sorted is placed correctly-we simply 
assume it is.) We can then add qualifier assertions, e.g., to 
check that a merge function is only called with sorted lists. 

2.4 Example: const 

Many qualifiers include restrictions on their usage. In our 
system, these restrictions can be expressed as qualifier asser- 
tions or as extra constraints between qualifiers. We illustrate 
the general pattern by adding updateable references (in C 
terminology, I-values) to our example language and giving 
the rules for const. 

Qualifier annotations and assertions can always be used 
safely (see Section 3.3), whereas modifications to the type 
rules must be made with care. It is up to the qualifier de- 
signer to ensure that after any modifications the type infer- 
ence rules remain not only sound, but also intuitive to the 
programmer, who sees only the presence or absence of qual- 
ifiers and not the underlying type system. Thii is especially 
important when designing multiple, interacting qualifiers, 
which can potentially complicate the type system. 

We add ML-style references to the language in Figure 1; 
for a discussion of const in the C type system, see Section 4. 
As mentioned in the introduction const is positive (for any 
r, r 5 const r). We extend the source language and the 
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I- Ql c 92 
k Ql int 5 Q2 int 

i- Ql C Q2 i- ~2 5 PI k P: 5 P’Z 

b QI (PI --t P;, 5 92 (~2 + P;) 

(a) Subtyping rules 

(SubInt) 

(SubFun) 

Ake:p kp5p’ 
Al-e:p’ 

Al-e:QT I-QLl 
A I- e/l : Q 7 

Al-e:Qr l-&El 
Al-le:lr 

A k n : I int 

A I- x : A(x) 

A[x H p.] k e : p 
A k Xz.e : I (pI -+ p) 

A I- el : Q (~2 -+ P) A I- e2 : ~2 

A k el e2 : p 

(Sub) 

(Assert) 

(Annot) 

W 

W) 

(Ld 

(APP) 

A!-ei:Qint AFe2:p Ate2:p 
A I- if el then e2 else eg fi : p 

A k el : p1 A[x I+ pl] I- e2 : p2 
A b let x = el in e2 ni : p2 

(b) Syntax-directed rules 

(If) 

(Let) 

Figure 4: Basic type checking rules 

qualified type language: 

e ..- ..- . ..]refe]!e(ei.=er 
V ..- ..- ... IO 
7 

..- ..- - +. 1 ref(p) 1 unit 

In this language, ref e creates an updateable reference, !e 
returns the contents of a reference, and ei := e2 stores the 
value of es in reference er. The type unit has only one value, 
0. 

Since we have introduced a new type constructor ref, 
we also need to describe how it interacts with subtyping. 
There are well-known problems with mixing subtyping and 
updateable references [AC96]. The obvious rule, 

is unsound. For example, suppose we allowed subtyping 
under a ref. Then we could typecheck the following code 
(any missing qualifiers are I): 

1 let c = ref(nonzer0 37) in 
2 let y = xin 

i 
y :=o; 
( ! x) I.-o 

5 ni ni 

Line 3 typechecks because we can promote the type of 
y to -nonzero int, since by subtyping nonzero int 5 
Tnonzero int. But notice that this does not affect the type 

of z, hence line 4 also typechecks even though the contents 
of 2 is now 0. 

The solution to this problem is to ensure that any aliases 
of the same refcell contain the same qualifiers, which can be 
achieved by using equality on the type of the refs contents 
in the subtyping rule. 

I- Ql c 92 I- p1 = p2 

k &I r&l) 5 92 d(m) 
(SubRef) 

The subtyping rule for unit is the expected rule: 

I- &I E Q2 
I- &I unit 5 Q2 unit 

We give type rules for our new constructs; here we jump 
directly to the qualified type rules. 

A I- () : I unit 

Al-e:p 
A I- ref e : I ref(p) 

A I- e : Q d(p) 
Al-!e:p 

A I- el : Q ref(pz) A I- e2 : ~2 
A I- el :=e2 : 1 unit 

(Unit) 

OW 

(Deref) 

(Assign) 

196 



The semantics of const requires that the left-hand side 
of an assignment be non-const. In our framework, this re- 
quirement can be expressed with an assertion ei ]-rCO.st := ez 
on every assignment. Notice that such assertions can be 
added automatically. 

Another way to add this restriction is to change (Assign). 
Recall that in our construction of the qualified type rules, 
whenever we needed to insert a qualifier but had no way of 
choosing one, we simply allowed all qualifiers. This is where 
& came from in (Assign). 

Rather than using annotations, we allow the qualifier 
designer to place restrictions at these choice points. Thus 
(Assign) becomes 

AEel: Tconst ref(pz) A I- e2 : p2 
Abel:=e2:Iunit (Assign’) 

2.5 Practical Considerations 

Although adding qualifier annotations and assertions 
changes the syntax of the source language, in practice the 
changes to the lexer and parser can be minimal. We can 
require that all qualifiers begin with a reserved symbol, so 
that the lexer can unambiguously tokenize qualifiers. The 
grammar for types is extended so that qualifiers can appear 
on all levels of a type, using well-understood techniques to 
avoid ambiguity [ASUS8]. We add a special syntactic form 
for assertions. 

We have prototyped such a set of extensions to an ANSI 
C front end. The extended language accepts standard ANSI 
C as a subset. The extensions required only trivial modifi- 
cations. 

We can transform a qualified program to an unqualified 
program simply by removing the qualifiers and the asser- 
tions. One way to do this is to follow the approach of Evans 
[Eva961 and use special comment syntax for our language 
extensions. This has the advantage that a compiler for the 
standard language will automatically ignore all qualifiers, 
though it makes the parser for the qualified type system 
much more complicated, especially when arbitrary levels of 
qualification are permitted. 

3 Type Inference, Polymorphism, and Soundness 

3.1 Type Inference 

The rules in Figure 4 describe a type checking system. We 
can also extend a type inference system in a similar way. As 
before we assume that the original type system is monomor- 
phic; polymorphism can be dealt with as described in Sec- 
tion 3.2. We view the standard type inference system as 
a collection of type inference rules RI, . . . , & giving judg- 
ments of the form A b e : 7; C, meaning in type environ- 
ment A expression e has type r under equality constraints 
C. Formally, the constraints generated by typing judgments 
are given by 

A solution to a set of equality constraints {Ii = ri} is a 
substitution S : TVar + 7)~ that maps type variables to 
ground types (types without variables) such that I- S(Ii) = 
S(ri) for all i. If A + e : 7; C and a solution S of C exists, 
then S defines a valid typing of e. If no solution exists, e is 
untypable. 

For expository purposes we assume that the type rules 
Ri can be written in the form 

A[i? C) 7’1 i- el : 71; Cl . . . A[Z” I+ F] t e, : TV,; C, 
C = (Uy=“=, Ci) U {Ii = ri} 

Al-e:~~;c 

where the ei are the immediate subexpressions of e (i.e., the 
inference rules are compositional), and the {Ii = ri} are a 
set of equality constraints between types, usually the ri and 
Te. 

In order to construct a new rule for qualified types, we 
define a spread operation (similar to [TT94]) 

SP : (TVar + QTYP) x LIP + Q%P 
that consistently rewrites standard types as qualified types. 
The first parameter of sp(., .) is a mapping V that is used to 
consistently rewrite type variables and metavariables, and 
the second parameter is the type to be rewritten. 

SP(v, 4 = V(cY) 
SPW, 4%. * f I Tz(c))) = 

n C(SP(v, 4,. * . , SP(v, T,(c))) 

where the cr are standard type variables and the K are fresh 
variables ranging over lattice elements. Intuitively, when- 
ever sp(., .) encounters a type constructor, it does not know 
which qualifier to add, and so the translation allows any 
qualifier to appear on the constructor. 

From the original type inference rules & we construct 
the qualified type inference rules G as 

A[5? I+ ip(v,)‘] I- el : sp(V,ri); Ci ... 
A[Z” e sp(V,h] I- e, : sp(V, rn); C,, 

C = (Ubl C;)eU $?:I) z SP(V9 ri)} 
A , e; 

where V maps each distinct metavariable r in & to a dis- 
tinct qualified type metavariable p, and each variable cr in 
Ri to a distinct qualified type K (Y. 

For example, in the standard type inference system for 
our language, the application rule is 

Al-el:q;Cl A!-ez:n;C2 
c = Cl u c2 u (71 = r2 + a} 

A I- el e2 : cr; C 

The constructed rule in the qualified type system is 

At-eel :pl;Cl A I- e2 : pz; CZ 
c = Cl u c2 u (p1 = K (p2 + K’ a)} 

A I- el e2 : K’ cw; C 

As in Figure 4 we add a subsumption rule and rules for 
qualifier annotations and assertions to the constructed type 
inference system. The resulting qualified type inference sys- 
tem proves judgments of the form A I- e : p; C, where now 
C contains subtyping constraints and lattice inequalities: 

c ::= {Pl 5 p2) I {Sl L &2} I Cl u c2 

These constraints arise from the subsumption rule and from 
equality constraints in the original rules (recall that p = p’ 
is an abbreviation for {p 5 p’, p’ 5 p}, where p and p’ are 
qualified types). 

To solve the subtyping constraints, we first apply the 
subtyping rules (in Figure 4a for our example language) to 
the constraints so that we are left with only lattice con- 
straints. These constraints are of the form IE C L, L E K, or 
L1 _C La. This is an atomic subtyping system, which can be 
solved in linear time for a fixed set of qualifiers [HRS’I]. 
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3.2 Polymorphism 3.3 Soundness 

As mentioned in the introduction, we can add a notion of 
polymorphic type qualifiers. We begin by adding polymor- 
phic constrained types u to our type language: 

CJ ::= vz.p\c 
P ..- ..- QT 

9’ 
::= Q ) int 1 pl + p2 
::= &I 1 

By using standard techniques found in [WF94, EST95, 
OSW97] we show that the type system we have pre- 
sented, with qualifiers, references, and polymorphism, satis- 
fies a subject reduction property. Our proof closely follows 
[EST95]. We give only a proof sketch, due to space limita- 
tions. 

The type VZ.p\C represents any type of the form p[Z C) &] 
under the constraints C[lz H Q], for any choice of qualifiers 
&. Note that polymorphism only applies to the qualifiers 
and not to the underlying types. 

Following [OSW97], we introduce existential quantifica- 
tion on constraint systems: 

We begin by defining a store s as a finite mapping from 
locations (i.e., variables) to values. We denote locations 
by a as a reminder that they must be bound in the store. 
The semantics assumes that all values are qualified, so that 
a semantic value is a qualifier annotation and a syntactic 
value (1 v). A program can always be rewritten in this form 
by inserting I annotations. We define a reduction context 
to flx the left-to-right ordering of evaluation: 

C ::= {pl 5 pz} I {QI 5 Q2) I Cl u C2 I XC 

R ::= [](Re](1v)R)ifRthenezelseesfi 
1 let x = R in e2 ni ] Q ref R 
(!R)R:=eIQa:=RIIRIRIl 

Note that we can lift existential quantjfication to the top- 
level by renaming variables. If S[i2 I+ Q] is a solution of C, 
then S is a solution of XC. Intuitively, existential quan- 
tification binds purely local qualifier variables (see below). 

As is standard in let-style polymorphism [Mi178], we 
restrict the introduction of polymorphic types to let- 
expressions. Due to well-known problems with mixing up- 
dateable references and polymorphism, we only allow syn- 
tactic values (i.e., functions in C) to be polymorphic [Wri95]. 
We extend the qualified type inference system to introduce 
and eliminate polymorphic types: 

We give single-step operational semantics for the execu- 
tion of a program in Figure 5. A configuration (s, e) is a pair 
where s represents the store and e represents the current re- 
dex. We assume that all values are qualified. We extend 
typings to configurations: 

Definition 3 (Store Typing) We write A I- (s,e) : p; C 
if both of the following hold: 

1. AFe:p;C 

A I- v : pl; Cl A[% * Vii.pl\C~] I- e2 : pz; CZ 
it not free in A 

A I- let z = TV in er ni : p; (3rZ.C1) U C2 
(Let,) 

2. For all a E dam(s), A(a) = Q. ref(po) and A I- s(a) : 
pa; c. 

The first condition guarantees that e has the right type, and 
the second condition guarantees that the typing of the store 
is consistent with the values in the store. 

A(z) = VR.p\C 
C 

A t- 2 : p[Z c-) Q]; C[Z I-+ Q] W’) 

In (Let,), we bind rZ before adding Ci to the constraints 
generated by e2 so the purely local Iz can be renamed freely 
without changing the conclusion of the rule. This matches 
the intuition that the Z are local to the body of the let, and 
also allows for a relatively simple proof of soundness. See 
[EST951 for m alternate approach. 

Polymorphism solves the problem with C’s monomorphic 
type system that was outlined in the introduction. Consider 
the following code fragment: 

1 let id = Xx.x in 
2 let y = id(ref 1) in 
3 let z = id(const ref 1) in 

. . . 
ni ni ni 

We first derive that Xx.x has type I (IE~ Q+ + K= cr,). Then 
we apply the rule (Let,) to give id the polymorphic type 
VK~.I (K~ oz + n, a,)\@. Now when we apply id in lines 2 
and 3, we can use rule (Var’) to instantiate id with two sep- 
arate sets of qualifiers, and so y can have type I ref(l int) 
even though z must have type const ref(l id). 

Lemma 1 If A I- e : p; C and 5’ is a substitution such that 
SC is satisfiable, then SA I- e : Sp; SC. 

Proof: By induction on the derivation of A !- e : p; C. 
Since SC is satisfiable all subsets of the constraints SC are 
satisfiable. The only interesting case is in (Let,,). In this 
case, we first rewrite the proof of A l- e : p; C so that none 
of the variables rZ are changed by S; we can do so because 
the Z are bound by an existential quantifier in the conclusion 
of (Let,). 0 

Theorem 1 (Subject Reduction) If A I- (s,e) : p;C 
and (s,e) + (s’,e’), then there exists an A’ such that 
A’ldo,,,(~) = A and A’ I- (s’, e’) : p; C’ where C’ E C. 

Proof: By induction on the structure of e. In the case of 
(Let,,), we need to show that we can give ez[x t) u] the same 
type as let 2 = v in e2 ni. We have A I- v : pl; Q. In the 
typing proof A[x c) VZ.pl\C1] I- e2 : ~2; C2, at each occur- 
rence of x in ea we applied (Var’) with some substitution S 
on Z. By Lemma 1 we have A I- v : Spl; SCI, so we can 
replace x by v and prove the same judgment. 0 

Next we observe that stuck expressions (expressions that 
are not values but for which no reduction applies [WF94]) 
do not typecheck, which is trivial to prove. Then we can 
show 

Corollary 1 (Soundness) If 0 I- e : p; C, then either e is 
a value or e diverges. 
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l 

b,R[Vz ~)lhl) + (&a~2 4) 12 Eh 

(4 ml 02 VII) + b, Wl 4) 12 Eh 

(s, R[if (I TX) then e2 else es f i]) + (s, R[ez]) n # 0 
(s, R[if (I 0) then e2 else es f i]) + (s, R[es]) 

(s, R[(Z Xs.el) 4) -+ (8, We1 b ++ 41) 
(s, R[let z = 2) in e2 nil) + (s, R[e2[2 I+ v]]) 

(s, R[l ref v]) + (s[a I-+ v], R[1 a]) a fresh 
(3, RW 41) -+ (ST %+)I) a E dam(s) 

(s, R[(l a) := v]) + (s[a I+ u], R[I ()I) a E dam(s) 

Figure 5: Operational Semantics 

4 Const Inference 

In this section we describe a const-inference system for C 
that takes an entire C program and infers the maximum 
number of consts that can be syntactically present in the 
program. Such a system relieves the programmer of the 
burden of annotating all possible const locations. Instead 
the programmer can annotate the most important consts 
and use the inference to determine the constness of the re- 
maining variables and parameters. Furthermore, our exper- 
iments show that the polymorphic qualifier system allows 
more const annotations than the C type system, which is 
monomorphic. 

4.1 C Types 

C types already contain qualifiers, hence our implementation 
does not use the sp operator defined in Section 3.1. How- 
ever, our system does need to translate the C types into the 
form described in Section 2.4. All variables in C refer to 
updateable memory locations. In the terminology of this 
paper, they are all ref types. When C variables appear in 
r-positions, they are automatically dereferenced. For exam- 
ple, consider the following code: 

int x; 
const. int y; 
x = y; 

In our example language, this program is written x := ! y. 
Omitting the qualifiers on int, let A = 0[x I+ 
I ref(int), y I-+ const rt$(int)] as can be derived from the 
definitions of x and y. Then we can type this program in 
our system as follows: 

A I- y : const ref(int) 
A t- x : I ref(int) At- !y: int 

I- I E xonst 
A!-x := !y : unit 

Even though in the C type it appears that the const is 
associated with the int, in fact const qualifies the ref con- 
structor of y. Hence y’s constness does not affect x. 

We can explain this systematically by giving a transla- 
tion 0 from the C types to ref types. For the sake of sim- 
plicity we only discuss pointer and integer types. Let the C 
types be given by the grammar 

C@p ::= & int I& ptr( C!&p) 

We define the mapping 0 : Clj~p + Ql$p as follows: 

~(C%P) = Q’ M(p) 
where (Q’, p) = 8’( CQp) 

e’(Q int) = (&,I int) 
e’(Q MC%)) = (Q, (Q’ d(d)) 

where (Q’, p) = e’( C&p) 

Intuitively, the qualified type corresponding to a C type has 
one extra ref on the outside, and the const qualifiers have 
shifted up one level in the type. Note that these are the 
types of Z-values, and the outermost ref should be removed 
to get the type of an r-value. 

The advantage of this transformation is that we can use 
the standard subtyping rules for ref. Consider the following 
example: 

int *x; 
const int *y; 
y = x; 

In the C type system, we are assigning x, which has type 
ptr(int), to y, which has type ptr(const int), thus it ap- 
pears that we are using a non-standard subtyping rule, be- 
cause pointers are updateable. However, when we translate 
this into our system, we see that the T-value x has type 
I ref(int), and the Z-value y has type I ref(const ref(int)). 
In order to assign x to y, we must show I- I ref(int) 5 
const ref(int) which is true in the standard subtyping rela- 
tion we use. 

4.2 Other Considerations 

Ultimately we would like the analysis result to be the text 
of the original C program with some extra const qualifiers 
inserted. Thus we place some restrictions on the types we 
infer. In C different variables with the same struct type 
share the declaration of their fields. Thus in our system, if 
a and b are declared with the same struct type, we only 
allow a and b to diier on the outermost (top-level) qualifier; 
the qualifiers on their fields must be identical. For example, 
consider the following code: 

struct st { int x; 3; 
struct st a, b; 
a = b; 

The assignment a-b is equivalent to a.x = b.x. TO satisfy 
the type rules, it is sufficient for the r-type of b.x to be a 
subtype of the r-type of a. x. However, because a. x and b. x 
share the field annotation in struct st, we require them to 
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be equal. Note that the top-level qualifier attached to the
ref  constructors of the l-types of a and b can be distinct from
each other. For example, although a must be a non-const
ref, we do not require that b be non-const.

On the other hand, we treat typedefs as macro-
expansions, e.g., in

c and d do not share any qualifiers.
One of the complications of analyzing real programs is

that real programs use libraries, the code for which is of-
ten either unavailable or written in another language. For
any undefined functions, we make the most conservative as-
sumption possible: We treat any parameters not declared
const as non-const. In general library functions are anno-
tated with as many consts as possible, and so lack of const
does mean can’t-be-const.

C contains many different ways to defeat the type sys-
tem, of which the most obvious is casting. For explicit casts
we choose to lose any association between the value being
cast and the resulting type. For implicit casts we retain as
much information as possible.

Another way to defeat the type system is to use variable-
length argument lists, or call a function with the wrong num-
ber of arguments. Both cases happen in practice; we simply
ignore extra arguments.

4.3 Polymorphic Inference

Recall that we allow standard let-style polymorphism, in
which polymorphic expressions are explicitly marked. Since
a C program is made up of a set of possibly mutually-
recursive functions, we need to syntactically analyze the pro-
gram to find the let blocks.

The FDG exactly captures the implicit structure of func-
tion definitions. There is an edge from f to g if g must be
type checked before f, and the strongly-connected compo-
nents of the FDG are the sets of mutually-recursive func-
tions.

To apply the polymorphic inference to a C program,
we first construct the FDG. Then we traverse the strongly-
connected components of the FDG in reverse depth-first or-
der (the traversal can be computed in time linear in the size
of the graph [CLR90]). We analyze each set of mutually
recursive functions monomorphically and then we apply the
rule for quantification. After we reach the root node of the
FDG, we analyze any global variable definitions.

More work is required after type inference to measure the
results. We want to know how many formal parameters can
be polymorphic, i.e., either const or non-const. However,
in general a C function may refer to global variables, so a C
function’s polymorphic type is not closed.

The types of global variables are closed once we have an-
alyzed the whole program. A straightforward post-analysis
pass combines this information with the types inferred dur-
ing the FDG traversal to compute the results.

We would prefer to use polymorphic recursion rather
than let-style polymorphism to avoid working with the FDG,
but BANE [AFFS98], the toolkit used to conduct our exper-
iments, did not support polymorphic recursion when this
work began. Because the qualifier lattice is finite and qual-
ifiers do not change the type structure, the computation of
polymorphic recursive types is decidable and in fact should
be very efficient. We have recently learned that Jakob Rehof
has written a polymorphic recursive type inference system
for C++ [Reh99].

4.4 Experiments

We perform const inference using the rules for const out-
lined in Section 2.4: Table 1 lists the set of benchmarks we
used to test our analysis. We purposely selected programs
that show a significant effort to use const, rather than those
that use it in only a few places.

Several of these “programs” are actually collections of
programs that share a common code base. We analyzed
each set of programs at once. This occasionally required
renaming certain functions that were defined in several files
to be distinct.

For each benchmark, we measured the number of inter-
esting consts (see below) inferred by the monomorphic and
the polymorphic version of our analysis. For any given ref
type, there are three possible results that our analysis can
infer: It can decide that the ref

1. must be const,

2. must not be const, or

3. could be either.

If the analysis inferred that something not marked as const
must in fact be const, this would indicate a type error. Since
all of our benchmarks are correct C programs, all of the
possible additional consts  detected must be from (3). The
total number of possible consts  is the sum of (1) and (3).
Note that the number of possible consts  does not depend on
the source-level const annotations, since removing a const
merely shifts the annotation on a reftype from (1) to (3).



Name Lines Description 
woman-3.0a 1496 Replacement for man package 
patch-2.5 5303 Apply a diff file to an original 
m4-1.4 7741 Unix macro preprocessor 
diffutils-2.7 8741 Collection of utilities for diffig files 
ssh-1.2.264 18620 Secure shell 
uucp- 1.04 36913 Unix to unix copy package 

Table 1: Benchmarks for const inference 

1 Name ] Compile time (s) ] Mono time (s) ] Poly time (s) ] Declared ] Mono ] Poly ] Total possible 
urnman-? na I ARA I x91 I RQl I Fin I fi7 I 72 I cl.5 1 

,.Y-- V.“.. *.- * .,.“_ -.1- 

patch-2.5 16.98 18.70 33.43 84 ii 10; 148 
m4-1.4 19.48 36.81 64.43 88 249 262 370 
diffitils-2.7 24.46 35.70 57.34 153 209 243 372 
ssh-1.2.26 84.55 101.90 174.28 147 316 347 547 
uucp-1.04 113.75 177.71 457.16 433 1116 1299 1773 

Table 2: Number of inferred possibly const positions for benchmarks 

We only counted the number of “interesting” consts 
placed on arguments and results of defined functions. Recall 
that consts can only be placed on pointers and that argu- 
ments are passed by value, so the function int f oo (int x, 
int *y) has only one interesting location where const can 
go, namely on the contents of y, which is itself a ref. 

Figure 6 shows our results, which are tabulated in Ta- 
ble 2. Our current implementation uses BANE [AFFS98], 
a framework for constructing constraint-based analyses, for 
the qualifier inference. BANE handles constraint representa- 
tion and solution, and our analysis tool generates constraints 
and interprets the results. 

The first column of measurements gives the compile time. 
The next two columns give the running time (average of five) 
for the monomorphic and polymorphic const-inference. We 
do not include the parsing time. Note that the inference 
scales roughly linearly with the program size, and that the 
polymorphic inference takes at most 3 times longer than the 
monomorphic inference. Our implementation uses a generic 
set constraint engine to solve qualifier constraints, and we 
expect substantial speedups would be achieved with a frame- 
work specialized to the qualifier lattice. 

The next column lists the number of interesting consts 
that were declared in the program. The right-most column 
indicates the total number of places that are syntactically 
allowed to have a const qualifier (according to our definition 
of interesting). 

The Mono and Poly columns list the results of the 
monomorphic and polymorphic inference algorithms, respec- 
tively. As mentioned previously, any additional qualifiers 
inferred can be either const or non-const (these correspond 
to unconstrained qualifier variables). For the monomorphic 
type system we can make all of these positions const and 
still have a type correct program. For the polymorphic type 
system we need to leave these as unconstrained variables, 
since they may be required to be const or non-const in 

4The ssh distribution also includes a compression library zlib and 
the GNU MP library (arbitrary precision arithmetic). We treated 
both of these as unanalyzable libraries; zlib contains certain struc- 
tures that are inconsistently defined across files, and the GNU MP 
library contains inlined assembly code. 

different contexts. 
The measurements show that many more consts can be 

inferred than are typically present in a program. For some 
programs the results are quite dramatic, notably for uucp- 
1.04, which can have more than 2.5 times more consts than 
are actually present. Recall these are already programs in 
which some effort was made to use const. 

For this set of benchmarks polymorphic analysis allows 5- 
16% more consts than monomorphic analysis. These results 
show that qualifier polymorphism is both useful and already 
latent in C programs, although we believe that most of the 
benefit for polymorphism comes from allowing fewer type 
casts rather than more consts. 

Our experiments show that an automated inference tool 
makes it much easier for a programmer to fully use const 
annotations to express information about the side-effects of 
functions. They also show that polymorphism allows more 
const annotations than the monomorphic C type system 
without casts. 

5 Related Work 

There are three threads of related work: examples of sys- 
tems that use type qualifiers, frameworks related to type 
qualifiers, and other techniques for checking programmer- 
specified invariants. 

We have already mentioned the example qualifier sys- 
tems of const from ANSI C [KR88], Evans’s lclint [Eva96], 
and static and dynamic annotations from binding-time 
analysis [DHM95]. Two other examples are the secure infor- 
mation flow system of [VS97], which annotates types with 
high- and low-security qualifiers, and the X-calculus with 
trust annotations of [0P97]. [0P97] suggests an extension 
of their system to multiple levels of trust, which is similar 
to our idea of a lattice of type qualifiers. 

Another example comes from Titanium [ySP+98], a 
Java-based SPMD programming language. Titanium uses 
the qualifier local to distinguish pointers to local memory, 
which can be accessed with a simple load instruction, from 
pointers to non-local memory, which must be accessed with 
a network operation. A pointer annotated with local must 
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be local; a pointer not annotated with local may either be 
local or non-local. In Titanium, local annotations are crit- 
ical because they allow the compiler to remove expensive 
run-time tests. 

Several other researchers have noted that type qualifiers 
are an important tool for program analysis. [So1951 gives a 
framework for understanding a particular family of related 
analyses as type annotation (qualifier) systems. [ABHR99] 
describes the Dependency Core Calculus (DCC) and pro- 
vides translations into DCC from several dependency-based 
type qualifier systems such as [VS97]. DCC is one example 
of a calculus based on monads. Recent work [Kie98, Wad981 
has explored the connection between monads and effect sys- 
tems [LG88]. Some effect systems can also be expressed as 
type qualifier systems. However, the exact connection be- 
tween monads, effect systems, and type qualifiers is unclear. 

Other frameworks choose a different design point by pro- 
viding more powerful annotation languages. For example, 
Klarlund and Schwartzbach’s graph types [KS931 allow pro- 
grammers to specify detailed shape invariants on data struc- 
tures. Another approach is the Extended Static Checking 
system [Det96, LN98], which uses sophisticated theorem- 
proving techniques that allow the programmer to check in- 
variants. The advantage of such systems is that the invari- 
ants are much more precise than in a type qualifier system. 
However, specifying such invariants requires more effort and 
sophistication on the programmer’s part. 

6 Future Work 

In the framework presented in this paper, types remain 
static throughout the source program, even though the val- 
ues stored in some locations may change through updates. 
Indeed, as stated our framework cannot express the analysis 
of Iclint, in which annotations on a given location may 
vary at each program point. 

One solution we are investigating is to assign each lo- 
cation a distinct type at every program point and to add 
subtyping constraints between the different types. For ex- 
ample, suppose that x has type 71 before a non-branching 
statement s and x has type 72 after s. Then if s does not 
perform a strong update of x we add the constraint 71 5 72; 
if s does strongly update x then we do not add this con- 
straint. This technique allows a measure of flow sensitivity, 
which may make type qualifiers more useful in certain ap- 
plications. 

Finally, an issue we have not addressed is the presen- 
tation and specification of polymorphic function types. In 
our system each polymorphic type also carries a set of con- 
straints, and we currently do not have a notation for spec- 
ifying constraints in the source language. Additionally, in 
practice these constraint systems can be large and difficult 
to interpret. Simplifying these constrained types for presen- 
tation is an open research problem. 

7 Conclusion 

We believe that type qualifiers are a simple yet useful addi- 
tion to standard type systems. We have presented a frame- 
work for adding type qualifiers, qualifier annotations, and 
qualifier assertions to an standard language, and we allow 
types to be polymorphic in the type qualifiers. Our exper- 
imental results show that for a set of benchmarks, many 

more const qualifiers can be added than are present, even 
though our benchmarks make significant use of const. 
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