
Eliminating Immediate Left Recursion

Left recursive productions can cause recursive descent
parsers to loop forever. Therefore, we consider how to
eliminate left recursion from a grammar.

Consider the productions A → Aα | β where α and β are
sequences of terminals and nonterminals that do not start
with A. These productions can be used to generate the
following strings:

β βα βαα βααα βαααα etc.

Note that the same language can be generated by the
productions

A → β R
R → α R | ε

where R is a new nonterminal. Note that the R-production
is right recursive, which implies that we might have
altered the associativity of an operator. We will discuss
how to handle this possibility later.

In general, immediate left recursion (as we have above) may
be removed as follows. Suppose we have the A-productions

A → Aα1 | Aα2 | ... | Aαn | β1 | β2 | ... | βm

where no βi begins with A. We replace the A-productions by

A → β1A' | β2A' | ... | βmA'
A'→ α1A' | α2A' | ... | αnA' | ε

where A' is a new nonterminal.

Let's eliminate left recursion from the grammar below (note
accompanying parse tree for a + a + a):

E → E + T
 | T

T → T * F
 | F

F → (E)
 | a

Note how the parse tree grows down toward the left,
indicating the left associativity of +.

Eliminating left recursion we get the following grammar.
Note parse tree for a + a + a:

E → TE'
E' → +TE' | ε
T → FT'
T' → *FT' | ε
F → (E) | a

Note how the parse tree grows down toward the right,
indicating that operator + is now right associative.

Algorithm for Eliminating General Left Recursion

Arrange nonterminals in some order A1, A2, ... , An.

for i := 1 to n do begin
 for j := 1 to i - 1 do begin
 Replace each production of the form Ai -> Ajβ by
 the productions:

Ai → α1β | α2β | ... | αkβ

 where

Aj → α1 | α2 | . . . | αk

 are all the current Aj productions.

 end { for j }

 Remove immediate left recursion from the Ai
 productions, if necessary.

end { for i }

Example: S → Aa | b
A → Ac | Sd | ε

• Let's use the ordering S, A (S = A1, A = A2).
• When i = 1, we skip the "for j" loop and remove immediate

left recursion from the S productions (there is none).
• When i = 2 and j = 1, we substitute the S-productions in

A → Sd to obtain the A-productions

A → Ac | Aad | bd | ε

• Eliminating immediate left recursion from the A
productions yields the grammar:

S → Aa | b
A → bdA' | A'
A' → cA' | adA' | ε

Left Factoring

Left factoring is a grammar transformation that is useful
for producing a grammar suitable for top-down parsing. The
basic idea is that when it is not clear which of two
alternative productions to use to expand a nonterminal
A, we may be able to rewrite the A-productions to defer the
decision until we have seen enough of the input to make the
right choice.

To illustrate, consider the productions

S → if E then S
 | if E then S else S

on seeing the input token if, we cannot immediately tell
which production to choose to expand S.

In general, if A → αβ1 | αβ2 are two A-productions, and
the input begins with a nonempty string derived from α, we
do not know whether to expand to αβ1 or to αβ2. Instead,
the grammar may be changed. The formal technique is to
change

A → αβ1 | αβ2

to

A → αA'
A' → β1 | β2

Thus, we can rewrite the grammar for if-statement as:

S → if E then S ElsePart
ElsePart → else S | ε

