Elimnating |mediate Left Recursion

Left recursive productions can cause recursive descent
parsers to loop forever. Therefore, we consider howto
elimnate left recursion froma grammar.

Consi der the productions A - Ad | B where a and [are
sequences of termnals and nontermnals that do not start
with A These productions can be used to generate the
follow ng strings:

B Ba Baa Baoa Baaaa et c.

Note that the sanme | anguage can be generated by the
producti ons

A - BR
R - aR| €
where Ris a new nontermnal. Note that the R-production

I's right recursive, which inplies that we m ght have
altered the associativity of an operator. W w Il discuss
how to handle this possibility later.

In general, immediate |eft recursion (as we have above) may
be renoved as follows. Suppose we have the A-productions

A - Adg | Aag | ... | Aap | B2 | B2 | --- | Bm

where no [3j begins with A. W replace the A-productions by

A - B1A | B2A | ... | PP
A - a1A | a2A | ... | apA | €

where A" is a new nonterm nal.

Let's elimnate left recursion fromthe grammar bel ow (note
acconpanying parse tree for a + a + a):

E

. e
E +
N
|F

|

a

E N E+ T

o~ T o

m—n:—-a/

E
T

F

a

Not e how the parse tree grows down toward the left,
I ndicating the | eft associativity of +.

Elimnating |left recursion we get the foll ow ng granmar.
Note parse tree for a + a + a:

E - TE E
E - +TE | e N
T - FT T E’
T - *FT' | € ‘ /\\
F N (E) | a F + E’'
| -‘F\\ T

Not e how the parse tree grows down toward the right,
I ndicating that operator + is now right associative.

Al gorithmfor Elimnating General Left Recursion

Arrange nontermnals in sone order A, A, ... , A.
for i :=1to n do begin
for j :=1toi - 1 do begin

Repl ace each production of the formA -> A by
t he producti ons:

A - B | B ... | B
wher e
A - ai | ax | . . o] o

are all the current A productions.
end { for | }

Renove i mmedi ate | eft recursion fromthe A
productions, if necessary.

end { for i }

Exanple: S - Aa | b
A - Ac| Sd| e

* Let's use the ordering S, A (S =A, A=A).

e Wieni =1, we skip the "for j" |loop and renove i mmedi ate
| eft recursion fromthe S productions (there is none).
e« Wheni =2 and j =1, we substitute the S-productions in

A - Sd to obtain the A-productions
A - Ac | Aad | bd | €

 Elimnating inmmedi ate left recursion fromthe A
productions yields the grammar:

S - Aa| b
A - bdA | A
A - cA | adA" | ¢

Left Factoring

Left factoring is a grammar transformation that is useful
for producing a grammar suitable for top-down parsing. The
basic idea is that when it is not clear which of two

al ternative productions to use to expand a nonterm nal

A, we may be able to rewite the A-productions to defer the
decision until we have seen enough of the input to nmake the
ri ght choi ce.

To illustrate, consider the productions

S - if Ethen S
| 1f Ethen S else S

on seeing the input token if, we cannot imrediately tell
whi ch production to choose to expand S.

In general, if A - o1 | aBf2 are two A-productions, and
the i nput begins with a nonenpty string derived froma, we
do not know whether to expand to a1 or to aBo. |Instead,

the grammar may be changed. The formal technique is to
change

A - aB1 | ap2

to

A - oA
A - B1 | P2

Thus, we can rewite the grammar for if-statenent as:

S - if Ethen S El sePart
El sePart - else S| ¢

