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Static Program Reduction via Type-Directed Slicing

ANONYMOUS AUTHOR(S)

A traditional program slicer constructs a smaller variant of a target program that computes the same result with

respect to some target variable—that is, program slicing preserves the original program’s run-time semantics.
We propose type-directed slicing, which constructs a smaller program that guarantees that a typechecker

will produce the same result on the sliced program when considering only a target program location—that

is, a type-directed slicer preserves the target program’s compile-time semantics, from the view of a specific

typechecker, with respect to some location.

Type-directed slicing is a useful debugging aid for designers and maintainers of typecheckers. When a

typechecker produces an unexpected result (a crash, a false positive warning, a missed warning, etc.) on a large

codebase, the user typically reports a bug to the maintainers of the typechecker without an accompanying

test case showing the analysis’ misbehavior in isolation. State-of-the-art approaches to this program reduction
problem are dynamic: they require repeatedly running the typechecker on the full program. A type-directed

slicer solves this problem statically, without rerunning the typechecker, by exploiting the modularity inherent

in a typechecker’s type rules. Our prototype type-directed slicer for Java is fully-automatic, can operate

on incomplete programs, and is fast. It automatically produces a small test case that preserves typechecker

misbehavior for 25 of 28 (89%) historical bugs from the issue trackers of three widely-used typecheckers:

the Java compiler itself, NullAway, and the Checker Framework; in each of these 25 cases, it preserved the

typechecker’s behavior even without the classpath of the target program. And, it runs in under a minute on

each benchmark, whose size ranges up to millions of lines of code, on a free-tier CI runner.
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1 INTRODUCTION
Program analysis is an important tool for ensuring the correctness of programs. Many programming

languages include a program analysis in their compiler in the form of a static type system, including

popular languages like Java, C, and Rust. Other program analyses are also widely-deployed in in-

dustry. For example, Airbus uses abstract interpretation [1]; Uber [2] and Amazon [3] use pluggable

type systems; Google [4] and Meta [5] have built their own program analysis platforms; etc.

Like all programs, the implementations of program analyses can have bugs. When they do, the

maintainers of the analysis desire small test cases that reproduce those bugs. However, a typical

report from a user of a static analysis includes the entire program on which the analysis failed. The

problem that we address in this work is converting a full program on which an analysis fails at some

known location to a small test case on which the analysis fails in the same way, to assist analysis

maintainers with debugging. Prior works on this program reduction problem like C-reduce [6] and

Perses [7] are dynamic: they use a delta-debugging-like algorithm [8] whose “interesting-ness”

function is defined by the presence or absence of the analysis behavior of interest. An undesirable
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2 Anon.

property of these dynamic approaches is that they require repeatedly running the analysis on the

project in which the failure originally occurred. This property is undesirable for two reasons: 1)

analysis run times are often long, making the debugging process slow, and 2) analysis maintainers

may not know how to build the program on which the analysis fails. In practice, therefore, many

analysis maintainers hand-craft minimized test cases for reported bugs in their analyses.

The key insight in this work is that there is a restricted but popular class of program analyses—

typecheckers—with two properties that we can exploit to help solve this problem statically: 1)

typecheckers are modular: they consider each part of the program in isolation, and require pro-

grammers to write summaries (i.e., types); and 2) typecheckers have a well-defined formalism (type

rules) that captures their modularity, which we can transform into a type rule dependency map from
a specific program element 𝑒 to (a superset of) the other program elements that the typechecker

could reason about when analyzing 𝑒 . This set of program elements is both finite and relatively

small: the code immediately around the location, and the summaries (but not the contents) of

program elements that are used nearby. This insight implies that we can over-approximate the set

of summaries that might be relevant to typechecking a given program location statically, while still
keeping that set small enough to be a useful test case. This means that we can dramatically reduce

the size a program while provably preserving the behavior of a typechecker.

To take advantage of this insight, we propose type-directed slicing, a technique that slices based on
the dependencies between the type rules that are relevant to the target program location, rather than

the run-time dependencies. Traditional slicing [9] reduces the size of a program while preserving

the run-time behavior of a program with respect to some program location; our type-directed

slicing approach preserves the compile-time behavior of a typechecker’s analysis of the program,

instead. In other words, type-directed slicing preserves all of the types that will be used in a typing

judgment for some particular program location.

For practicality, we also introduce a distinction between two kinds of type-directed slicing: exact

and approximate. Exact type-directed slicing guarantees that analysis behavior is preserved, but

requires the user to provide the full input program. In practice, this means providing the object

code associated with any libraries that are used (e.g., the classpath for a Java program); it is often

inconvenient to recover this from a large project when debugging a typechecker failure. For that

reason, approximate type-directed slicing can be applied to incomplete programs (i.e., programs

where not all symbols are solvable)—instead, it creates symbols as needed—but in turn it weakens

the guarantees of the slicer. We have found that while both exact and approximate type-directed

slicing are useful in practice, approximate slicing (when it works) is much more convenient.

Our type-directed slicing approach occupies a new part of the design space for program reduction

tools. It has two key advantages over state-of-the-art dynamic reduction tools: it is much faster,

because it avoids the slowest part of dynamic reduction (repeatedly running the analysis whose

behavior is being preserved); and, in approximate mode it can be applied to incomplete programs,

making it easier to apply in realistic debugging scenarios. However, it has a key limitation relative

to state-of-the-art dynamic tools: it is limited to preserving the behavior of typecheckers, rather

than being applicable to an arbitrary program analysis. In summary, our contributions are:

• our novel exact type-directed slicing technique (section 3);

• a proof that exact type-directed slicing preserves the compile-time semantics of its target

with respect to a typechecker; intuitively, this proof works because the exact type-directed

slicer faithfully preserves anything that a type rule might reason about (theorem 3.4);

• a novel approximate type-directed slicing technique, which relaxes some requirements and

guarantees of exact type-directed slicing in exchange for ease of application to complex or

incomplete programs, which is useful in realistic debugging scenarios (section 4),
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Static Program Reduction via Type-Directed Slicing 3

• an implementation of a type-directed slicer for Java typecheckers with both exact and ap-

proximate modes, in a tool called TypeSlice (section 5); and

• an evaluation of TypeSlice’s effectiveness as a program reduction tool for historical bugs in

three typecheckers for Java: the type system in the Java compiler itself, the NullAway nulla-

bility analysis [2], and the Checker Framework [10] (a collection of “pluggable” typecheckers

that extend the Java type system), which shows TypeSlice’s ability to faithfully reproduce

analysis behavior in 89% of cases in its approximate mode, as well as its speed: it terminates

in an average of 15 seconds on our benchmarks (section 6).

2 MOTIVATING EXAMPLE
To motivate static program reduction, consider issue #3850 of the Checker Framework [11]; fig. 1

shows a screenshot of this bug report. The Checker Framework is a tool for layering additional

“pluggable” type systems on top of the base type system supported by Java; it comes with a set

of type systems for users to choose from, including a nullness checker that is used by a number

of open-source projects. One such open-source project is Apache Calcite [12], an open-source

dynamic data management framework. An Apache Calcite maintainer opened issue #3850 on the

Checker Framework’s bug tracker on GitHub, reporting a regression in Checker Framework version

3.7.1 in the nullness checker, versus the previous 3.7.0 version. The Calcite maintainer provided the

stack trace from a crash in the framework and a link to the code in Calcite that was being analyzed

when the framework crashed.

Fig. 1: The initial bug report for the motivating
example.

This bug report is typical for an analysis

tool that is widely deployed. A user—usually

themselves a maintainer of a large project—

encounters a regression of some kind from a

previous version when they try to update the

analyzer to the latest release; in this case, a

crash. The user delays upgrading the analysis

tool and instead files a bug with the analyzer’s

issue tracker. It is then up to the analysis de-

veloper to build a minimized test case that trig-

gers the bug: it is clearly impractical to test the

analyzer by re-running it on the user’s entire

application (for example, in this case Apache

Calcite is about 365,000 lines of non-comment,

non-blank Java code).

Creating a minimal test case is not always

trivial. The analysis developer needs to look at

the stack trace and the corresponding code and build up a model of what parts of the target project

matter in reproducing the crash, and what parts do not. Building up this model requires deep

expertise in how the analysis tool works: the analysis developer is reasoning “like the tool would”

in order to build the test case.

Our key insight is that this “reasoning like the tool would” process need not be manual: for a

typechecker, we can formalize what the tool is allowed to reason about from the type rules—and

thereby automate this process. Formalizing what the analysis is allowed to reason about is the core

idea behind our type-directed slicing technique. Of course, the analysis developer has a better grasp

on what is relevant to any particular bug: in the case of issue #3850, the maintainer is able to write

a test case that is only 11 lines of code and still reproduces the crash. Our practical type-directed

slicer (TypeSlice) produces a 119 line program totally automatically, without any manual effort,
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4 Anon.

Γ ⊢ 𝑥 : 𝐶0 fields(𝐶0) = 𝐶 𝑓

Γ ⊢ 𝑥 .𝑓𝑖 : 𝐶𝑖

T-FIELD

(a) The standard type rule for a field read in a
Java-like language, using the formalism of Feath-
erweight Java [13]. The “fields” helper is as de-
fined in Fig. 1 of [13].

𝑀𝑇 (𝑥 .𝑓𝑖 ) =

𝑀𝑇 (𝐶0)
𝑀𝑇 (𝐶𝑖 )
declaration of 𝑓𝑖 in 𝐶0

(b) The derived type rule dependency map
entry for a field read.

Fig. 2: An example type rule from Java and the corresponding entry in our type rule dependency
map. Note how the map preserves exactly the structures used in the type rule. The map’s entry
for a type declaration (which is invoked by𝑀𝑇 (𝐶0) and𝑀𝑇 (𝐶𝑖 ) but is not shown for space reasons)
preserves the type declaration itself as well as the declarations of any extended or implemented
classes or interfaces. The notation𝐶 𝑓 denotes a vector of field declarations (a class𝐶 and a name 𝑓 ).

that can also reproduce the bug, in just 28 seconds. The reason that TypeSlice’s output is larger is

that it produces a program that will reproduce any bug that the target typechecker could encounter

at the target location: that is, the slice that it produces is an over-approximation of the program

elements required to reproduce the specific bug.

In the anticipated deployment scenario for TypeSlice, a typechecker developer quickly and easily

uses TypeSlice to get a reasonably-small test case, and then can further minimize that test case (by

hand or with an extant dynamic reducer like Perses [7]) as they work on a fix. The key advantage of

TypeSlice in this deployment scenario is that it allows the typechecker developer to skip the tedious

and error-prone process of manually extracting an independently-compilable, bug-reproducing

test case from the large project in which the bug originally occurred.

3 EXACT TYPE-DIRECTED SLICING
This section describes the core of our type-directed slicing technique: exact type-directed slicing,

which assumes access to the full input program. An exact type-directed slicer guarantees that

its output exactly preserves the behavior of a specific typechecker on its target component(s)

(theorem 3.4). It takes as input a program 𝑃 , a target component𝐶 in 𝑃 , and a typechecker𝑇 defined

by a set of type rules. We assume in our presentation that 𝑃 is written in a typical object-oriented

programming language with subtyping, single inheritance, type variables, etc., such as Java or C#;

the same ideas should be applicable in other language paradigms, but exploring that is beyond

the scope of the present work. For simplicity of presentation, we assume that methods are the

components of interest.

3.1 Type Rule Dependency Map
The core insight behind our exact type-directed slicing technique is that we can construct a type
rule dependency map from the type rules 𝑇𝑅 of the target typechecker 𝑇 . Each type rule 𝑡 ∈ 𝑇𝑅
(e.g., the type rule in fig. 2a) is a pair of a set of premises (traditionally written above the line in a

typing judgment) and a set of conclusions (traditionally written below the line). Given such a set of

type rules, we construct a type rule dependency map by intuitively inverting them: for a program

element 𝑒 in the conclusions of a rule (such as the field read below the line in fig. 2a), the type rule

dependency map maps 𝑒 to the elements in the premises or elsewhere in conclusions of that type

rule that may have been involved in a typing judgement about 𝑒 (such as the declarations of the

types 𝐶0 and 𝐶𝑖 in fig. 2a). More formally:
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Static Program Reduction via Type-Directed Slicing 5

int a = 0;
final int b = two() + 1;
int c = two();
static int two() { return 2; }
void target() {

c++;
int d = b + 1;

}

(a) The example input. target() is the component of interest.

final int b = 0;
int c;
void target() {

c++;
int d = b + 1;

}

(b) The output produced by TypeS-
lice for the input in fig. 3a.

Fig. 3: Example input and output described in example 3.2 that uses the field read rule from fig. 2.

Definition 3.1. Given a typechecker 𝑇 with a set of type rules 𝑇𝑅 , a type rule dependency map 𝑀𝑇

is a function from a program element 𝑒 to the set of other program elements 𝐸 that appear in the

typing judgment derived via the rules in 𝑇𝑅 when typing 𝑒 .

Intuitively, we can view the type rule dependency map as a function that answers the ques-

tion “what other program elements are relevant when we derive a typing judgment for 𝑒?” It is

straightforward to derive a type rule dependency map for a typechecker directly from its type

rules. For example, part of the specific type rule dependency map from our experiments (for Java

type systems) is given in fig. 2b. We constructed this type rule dependency map by consulting the

type rules for Java, such as the T-FIELD rule in fig. 2a (which comes from the Featherweight Java

formalism in [13]). Each type rule includes a set of premises (above the line), which indicate the

"inputs" to that type rule. For example, the type rule for field reads in fig. 2a includes the type𝐶0 of

the receiver expression 𝑥 as a premise. To build the map, we translated the premises of each type

rule in Java into a rule like the one that appears in fig. 2b. Note how this map directly reflects the

reasoning that a type system does—for each expression’s type rule, the type rule dependency map

encodes the facts that the type system uses to typecheck that kind of expression.

Example 3.2. Consider the example input/output programs in fig. 3, assuming that TypeSlice’s

target component is target() (i.e., TypeSlice’s goal is to preserve everything in the input program

that is needed to typecheck target()). First, consider the field a, which is not used in target().

TypeSlice should remove it entirely, because typechecking target() cannot ever require looking up

a’s type: the typing judgment will never include a reference to it. Next, consider the final field b,

which is used by target(). Its declaration (the type and the finalmodifier) is visible to a typechecker,

and so must be preserved. However, the initializer expression (to the right of the =) is not: the type

of the initializer is not relevant for typechecking uses of the field, and so it can be removed—except,

final fields in Java must be initialized, so TypeSlice adds a type-compatible initializer to a default

value (0). c is not a final field, so its initializer can be removed entirely. Finally, the two() method

used in the original initializers of both b and c can be removed.

Note that the type rule dependency map need not be exact: any over-approximate mapping will

do. For example, our type rule dependency map for Java only includes the declaration of the field

actually being read (𝑓𝑖 ) in its rule for field reads, but the premise for the type rule includes all the

fields of the containing class (fields(𝐶0)). It would be sound for our type rule dependency map

to include all of the fields and their types (i.e., 𝐶 𝑓 ), but because the conclusion only uses 𝑓𝑖 and

𝐶𝑖 it suffices to only include them—the other fields in the premise are extraneous to the typing

judgment. With this in mind, we can notice that there are many valid type rule dependency maps

for a given typechecker—including a “trivially sound” map that returns the whole input program.

Our approach exploits the type rules to derive a relatively “precise” map.
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6 Anon.

Algorithm 1: The core algorithm for producing a type-directed slice. The slice is iteratively

built up, starting from the target component and proceeding outwards according to the

type rule dependency map.

input :Program 𝑃 , component (i.e., set of program elements) 𝐶 ∈ 𝑃 , type rule dep. map𝑀𝑇

output :A type-directed slice of 𝑃 with respect to 𝐶

𝑤𝑜𝑟𝑘𝑙𝑖𝑠𝑡 ← 𝐶

𝑠𝑙𝑖𝑐𝑒 ← ∅
while𝑤𝑜𝑟𝑘𝑙𝑖𝑠𝑡 ≠ ∅ do

𝑐 ← 𝑟𝑎𝑛𝑑𝑜𝑚𝐶ℎ𝑜𝑖𝑐𝑒 (𝑤𝑜𝑟𝑘𝑙𝑖𝑠𝑡)
𝑤𝑜𝑟𝑘𝑙𝑖𝑠𝑡 ← 𝑤𝑜𝑟𝑘𝑙𝑖𝑠𝑡 \ 𝑐
if 𝑐 ∉ 𝑠𝑙𝑖𝑐𝑒 then

𝑠𝑙𝑖𝑐𝑒 ← 𝑠𝑙𝑖𝑐𝑒 ∪ 𝑐
𝑤𝑜𝑟𝑘𝑙𝑖𝑠𝑡 ← 𝑤𝑜𝑟𝑘𝑙𝑖𝑠𝑡 ∪𝑀𝑇 (𝑐)

return 𝑠𝑙𝑖𝑐𝑒

We note that similar analyses can share type rule dependency maps—for example, between

multiple type systems for the same language, since the type rules generally have the same structure—

even if the specific rules differ. Our experiments use the same map for Java’s base type system and

for seven Checker Framework pluggable type systems (each of which is a distinct analysis proving

a different property). To support NullAway’s typechecker, we had to make just one small change to

this map: NullAway can issue an error in a constructor if there exists a field that is not initialized

by the constructor, so NullAway’s type rule dependency map must map a class’ constructor to

all of the fields of that class. A similar map could probably be reused for any other typechecker

that targets Java, possibly with minor modifications like the one necessary to faithfully model

NullAway, which means that although there is some manual work required to construct the map

from the type rules, this cost can be amortized across many typecheckers for the same language.

3.2 Core Algorithm and Its Properties
The worklist algorithm in algorithm 1 is the core of exact type-directed slicing; much like traditional

slicing [9], the core algorithm is simple. The inputs are the target program 𝑃 , a component within

it 𝐶 , and a type rule dependency map𝑀𝑇 for the typechecker whose behavior is to be preserved.

The algorithm creates a worklist containing each element of 𝐶—for example, if 𝐶 is a method,

then the initial worklist contains the declaration and body of the method—and then iteratively

builds the slice outwards from the input component, guided by the type rule dependency map. At

each step, algorithm 1 removes an arbitrary program element 𝑐 from the worklist (in a practical

implementation, the worklist is a queue). If that element is already in the slice, then the algorithm

continues to the next worklist element. If not, then the element is added to the slice, and then the

modularity model is used to update the worklist.

Theorem 3.3. Algorithm 1 terminates.

Proof. Algorithm 1 adds each element of the original program to the slice at most once. Assum-

ing the input program is finite, this guarantees termination. □

The run time of algorithm 1 is at most linear in the size of the input program; this worst case

occurs if the output slice is exactly equal to the full input program. For type systems, the type rule

dependency map can be relatively precise (since it was directly derived from the type rules), so the
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Static Program Reduction via Type-Directed Slicing 7

actual run time of the type-directed slicer is usually (much) faster. It is a pleasant property of type-

directed slicing that the algorithm gets faster as the output gets closer to minimality—improving

the type rule dependency map’s precision makes the algorithm both quicker and more useful.

Theorem 3.4. Type-directed slicing preserves the output of a typechecker 𝑇 on a target component
𝐶 , given a sound type rule dependency map𝑀𝑇 for 𝑇 .

Informally, theorem 3.4 states that a type-directed slicer guarantees that the behavior of a type-

checker will be the same within the target method, regardless of whether we run the typechecker

on the type-directed slice or on the original program. That is, theorem 3.4 is a preservation theorem:

the behavior of the typechecker is preserved.

Proof. The proof follows directly from the derivation of the type rule dependency map and its

soundness. It is always possible to construct a sound type rule dependency map for a type system by

deriving it from the type rules. If the type rule dependency map is sound and so over-approximates

the related components that appear in the typing judgment derived by 𝑇 for 𝐶 , then algorithm 1

must include each related component in the slice. □

If the type rule dependency map is not sound, then type-directed slicing may not preserve the

behavior of the typechecker. We discuss intentionally relaxing this soundness requirement in

section 4, producing “approximate” type-directed slices. However, the soundness requirement does

point to one limitation of type-directed slicing for debugging: when debugging a problem with a

typechecker’s modularity, type-directed slicing may not be effective.

For both program reduction and slicing, precision is usually defined by minimality: that is,
how close the slice is to the smallest program that preserves the property of interest (run-time

semantics for slicing, typechecker behavior for program reduction). Type-directed slicing does not
guarantee minimality: allowing over-approximation in the type rule dependency map precludes

any such guarantee. In practice, however, we would like our type-directed slices to be relatively

small: that is, we would like them not to include too many unnecessary program elements. How

close type-directed slicing comes to this ideal depends on the precision of the type rule dependency

map: the type rule dependency map “all elements of the input program are related to each other” is

over-approximate, but will never lead to small type-directed slices. In section 6.4, we show that

our implementation is reasonably precise because it produces slices that are within an order of

magnitude of the size of human-minimized test cases.

3.3 Discussion
3.3.1 What Type-Directed Slicing Does Not Preserve. Apart from the target component 𝐶 , other

components in the program are either emptied (if the type rule dependency map only includes

their type signatures) or removed. Thus, type-directed slicing destroys the run-time behavior of the

program completely, making the output program completely unrunnable—type-directed slicing

makes no attempt to preserve the program’s concrete semantics. However, since type-directed

slicing preserves the specifications of the involved elements, it can preserve the compile-time

semantics of the input program, which makes sense—we designed type-directed slicing to help

typechecker developers with debugging, which does not involve running the analyzed program,

anyway. We note that human-written test cases for typecheckers, like those discussed in section 6.4,

are also “unrunnable” in this way.

3.3.2 Relationship to Traditional Slicing. A traditional slicer preserves the run-time behavior of

a program 𝑃 at some location 𝐿 with respect to the language’s concrete semantics. One way to

understand the type-directed slicing algorithm presented above is that it generalizes slicing to
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an abstract semantics—in particular, the abstract semantics of the typechecker. In other words, if

we view the typechecker as an abstract interpretation [14] (which we can do, since typechecking

and abstract interpretation are isomorphic [15]), then type-directed slicing produces a slice that

contains the parts of the program that can contribute to the abstract interpretation’s result at the

target location.

4 APPROXIMATE TYPE-DIRECTED SLICING
An advantage of static program reduction (over dynamic techniques in prior work) is that an

approximate type-directed slicer can operate on incomplete programs. In a scenario like the one

in section 2, this ability is particularly useful: a user reports a bug that is only reproducible on

a large program to the maintainers of a typechecker. It is inconvenient and time-consuming for

the maintainers to learn to build every bug-triggering program—many programs in the wild have

unusual, quirky build processes.

To handle incomplete programs, we introduce approximate type-directed slicing, which does not

require the full source code of 𝑃—any subprogram of 𝑃 that contains the target location can be

the input. While this approximation introduces unsoundness (i.e., violates theorem 3.4), it is often

good enough in practice (which we show empirically in section 6). Our implementation (section 5)

supports both exact and approximate type-directed slicing. The key theoretical difference between

exact (as presented in section 3) and approximate type-directed slicing is that an incomplete program

may contain unsolved symbols—that is, names (of classes, fields, etc.) that are not in the input. An

approximate type-directed slicer has to create sensible “library” code to build a slice that includes

these unsolved symbols. The key challenge in doing so is the various sources of ambiguity in a real

programming language (e.g., Java) that can break the guarantees of theorem 3.4 for an approximate

type-directed slicer. Section 4.1 describes the changes to the core exact slicing algorithm that are

needed to support approximate slicing, and then section 4.2 discusses how we handle ambiguities

in our approximate slicer in practice. The specific causes of such ambiguity may be different in a

different programming language, but we expect that there will be significant similarities.

4.1 Context Inference for Unsolved Symbols
To support approximate type-directed slicing, we make one high-level modification to algorithm 1.

The key idea is to check, for each component 𝑐 that will be added to the slice, whether or not it is

an unsolved symbol—that is, whether or not it is in the input program. If 𝑐 is unsolved, then the

approximate algorithm calls an inferContext function and adds its results to the slice (along with 𝑐).

The inferContext function takes the given component 𝑐 and produces a set of components that 𝑐

requires. The implementation of inferContext is directly grounded in the type rule dependency map:

From the dependency map, we can determine which components are needed, and for any unsolved

ones, the map structure allows us to know—without executing the code—which components must

be synthesized to maintain the expected behavior of the typechecker. For example, if 𝑐 is an unsolved

type name, the output of the inferContext function is a class declaring that type. More specifically,

inferContext does the following for these kinds of unsolved symbols in our Java implementation (it

might differ for other languages):

• 𝑐 is an unsolved type expression (e.g., the type of a field declaration or of a parameter):

inferContext creates a synthetic class for 𝑐 .
• 𝑐 is a read of an unsolved field: inferContext first checks if the field’s type is unsolved. If so,
it calls itself recursively on the type. Then, it adds the field to the synthetic class that it has

created for the field’s type.
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Static Program Reduction via Type-Directed Slicing 9

• 𝑐 is an unsolved method: inferContext first checks that each of the following types is not

unsolved, and calls itself recursively on any types that are: the type containing the method,

the return type (if applicable), thrown exception types, and the parameter types. Inside the

synthetic class created for the type containing the method, inferContext will add the synthetic
declaration of the method.

A naïve application of these rules can lead to incompatibilities between synthetic types and the

rest of the slice, because the creation of a synthetic type does not depend on the usage context.

For example, consider the field declaration int x = MyClass.sizeCount;. Without the source code for

MyClass, the slicer cannot determine the type of the sizeCount field directly. To overcome this, the

slicer initially assigns a synthetic type to sizeCount. But, the synthetic field clearly has the wrong

type: the type must conform to int. To address this problem, inferContext runs the language’s

compiler on the created component(s) within the context of the slice. The slicer then uses the

error messages to correct any synthetic types that are incompatible: for example, it can remove the

synthetic type for sizeCount and replace it with int to fix the example above. Note that the cost of

these compiler runs is small: proportional to the size of TypeSlice’s output, not to the size of the

original program; this technique can be thought of as "double-checking" the output of TypeSlice to

catch ambiguous types that would prevent compilation.

4.2 Sources of Ambiguity in Java
This section explains a few of the specific sources of ambiguity in Java that we encountered while

building our approximate type-directed slicer. This section’s list is non-exhaustive (for space rea-

sons), but other sources of ambiguity are broadly similar. We expect that an approximate slicer for

another language might need to handle some or all of these issues, plus some other language-specific

issues. So, this section’s goal is to give the reader an understanding of the sorts of ambiguity that

occur in approximate type-directed slicing.

import security.app.Data;
public class MainDatabase {

public void main() {
Data.clearCache(); } }

Fig. 4: clearCache()’s return type?

4.2.1 Type Ambiguities. Consider the example in fig. 4. As-

sume that Data.java is not available as source code: it is im-

ported as a library. The return type of the clearCache()method

is ambiguous to an approximate type-directed slicer. Instead,

inferContext will create a synthetic return type for clearCache().
However, this synthetic return type is not the actual return

type, which could lead to the resulting program not being

compilable (e.g., if the result of Data.clearCache() were to be

assigned into a local variable). While compiler errors can help resolve some type ambiguities, there

are limitations. In cases where the type is inherently ambiguous, such as with Data.clearCache()

(because its return type is not assigned anywhere), the compiler may not provide any error message,

and our slicer will leave the synthetic type in the final output. In the event that this compromises

the guarantees of theorem 3.4, the user would be required to switch to exact type-directed slicing

by providing a classpath.

class Barley extends Grass {
boolean hasLongLeaf() {

return longLeaf; } }

Fig. 5: What class defines longLeaf?.

4.2.2 Lack of Information Regarding Superclasses. Another
issue arises from the absence of information about superclass

relationships. Consider three classes: Barley, Grass, and Plant,

where Barley extends Grass, and Grass extends Plant. Suppose

the input is (only) the code in fig. 5, without source files for

Grass or Plant or a classpath that contains them. In this context,

it is unclear whether the longLeaf field belongs to Grass or

, Vol. 1, No. 1, Article . Publication date: February 2025.



442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

10 Anon.

Plant—in fact, the slicer has no way to know that Plant even exists, since it is not mentioned

anywhere in the input. Our implementation assigns such unsolved fields to the nearest superclass

(in this example, Grass).

Barley barley = new Barley() {
@Override
public int harvestTime() {
return startDate + 60; } };

Fig. 6: Is startDate effectively final?

4.2.3 Final Variables in Anonymous Classes. In Java, an

anonymous class can access local variables from its enclos-

ing scope only if those variables are effectively final. For

example, if the startDate variable in fig. 6 is not effectively

final in the enclosing scope of barley, it is treated as a field

of the Barley class. Keeping track of whether local variables

are effectively final requires maintaining a complete symbol

table, which is not possible if some of the enclosing scope

is unsolved—for example, if this code is inside a class that extends another, unsolved class. We

observe that it is unlikely that a field and an effectively final local would share the same name.

Given this observation, for the purpose of symbol resolution, we assume that every local variable

from the enclosing scope of an anonymous class is effectively final, resolving the ambiguity.

class Banana extends Apple<int[]> {
class InnerBanana extends InnerApple {

// ...
} }

Fig. 7: Ambiguity from “CF-577” benchmark.

4.2.4 Relocating Inner Classes. The location

of a class can also be ambiguous. For exam-

ple, consider the human-written test case for a

historical bug in our evaluation (“CF-577”) in

fig. 7. If Apple and Banana are in different source

files, and the approximate type-directed slicer

only has access to Banana, then it is ambiguous

whether InnerApple is a class in the same pack-

age as Banana (and so usable with no import), or an inner class of the superclass Apple. Absent

source code for Apple, an approximate type-directed slicer cannot know. In our implementation, we

heuristically choose to always place classes used without an import (like InnerApple, above) in the

same package as the corresponding source file. However, if such a class should actually be placed in

the superclass Apple instead as an inner class, the behavior of a typechecker might change. In fact,

this source of ambiguity does cause our implementation’s approximate mode to fail to preserve the

behavior of a typechecker for one historical bug (CF-577); see section 6.2.1.

4.2.5 Lambdas and Function Types. Lambda expressions are another source of ambiguity. Java’s

lambda support was added to the language late, and functions are not truly first-class—function

types are not in the regular type hierarchy. When an approximate type-directed slicer encounters

a lambda expression used as the right-hand side of some pseudo-assignment whose left-hand

side is unsolved (e.g., the lambda expression is passed as an argument to an unsolved method),

it needs choose a compatible type for the synthetic left-hand side (such as the parameter). Our

implementation uses a straightforward heuristic: it creates a synthetic functional interface type

for each combination of function arity (i.e., 0-parameter, 1-parameter, etc.) and presence of return

type (i.e., void return or not) with fully-unconstrained generic parameters, and uses the matching

functional interface for the actual lambda expression.

4.2.6 Annotation Targets. Java makes a distinction between “declaration” and “type” annotations.

The former, introduced in Java 5, can be applied to method declarations, field declarations, etc. The

latter, introduced in Java 8, can be applied anywhere that a Java type could appear. There are some

contexts where it is not clear whether an annotation is a declaration annotation or a type annotation,

so an approximate type-directed slicer has to choose. For example, consider an annotation that is

only used to annotate fields. There are two possibilities: it is a declaration annotation applied to
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Static Program Reduction via Type-Directed Slicing 11

a field declaration, or it is a type annotation applied to the type of the field. These two kinds of

annotations are not technically mutually-exclusive in Java, so our implementation treats unsolved

annotations as both. However, this can change the behavior of a typechecker, if the typechecker

expects a particular annotation to be one or the other.

4.2.7 Wildcard Imports. Each import statement in Java either names a specific symbol or imports

all symbols in a particular package by appending .* after the package name in the import declaration.

The latter is called a “wildcard import.” Wildcard imports introduce ambiguity into the symbol

resolution process in incomplete Java code. For example, without any wildcard imports, a type that

is not imported must be in the same package as the class in which it is used. However, if that class

has a wildcard import (and the imported package is not available as source), then the slicer cannot

distinguish between the case where an unsolved type belongs to the imported package and the

case where the type belongs to the same package as the class in which it is used. While the type

rule dependency map that our implementation uses assumes that a typechecker can reason about

the package that a class is defined in, in our experience it rarely matters in practice.

5 IMPLEMENTATION
We implemented an open-source type-directed slicer for Java, called TypeSlice [16], on top of the

JavaParser [17] library for Java abstract syntax tree manipulation. TypeSlice uses JavaParser both

to parse the input Java code and to connect related symbols (using JavaParser’s Symbol Solver

module). In exact mode, TypeSlice takes the classpath of the target program (a list of .jar archives

containing Java bytecode) as an additional input. Then, it uses the Vineflower decompiler [18] to

turn these bytecode files back into source files, so that it has access to the full program as source.

Our data and experimental scripts are open-source and available [19].

6 EVALUATION
Our evaluation addresses these research questions:

RQ1 Can TypeSlice preserve the behavior of real Java typecheckers on a historical dataset of

typechecker bugs?

RQ2 Is TypeSlice’s running time acceptable?

RQ3 How close is the output of TypeSlice to what a human developer would do by hand?

RQ4 How does TypeSlice compare to Perses [7], Vulcan [20], and T-Rec [21], state-of-the-art

dynamic program reduction tools?

RQ5 Is TypeSlice applicable to a broad range of programs?

6.1 Methodology
We performed a single experiment to answer RQs 1-3: we ran TypeSlice on historical bugs that we

gathered from the issue trackers of three Java typecheckers:

• javac’s type system, via the OpenJDK bug repository;

• Uber’s NullAway [2] type-based nullness analysis; and

• the Checker Framework [10], a collection of pluggable typecheckers.

Our goal is to determine if TypeSlice would have been useful in debugging reported issues in these

tools. First, we reviewed each issue tracker for issues meeting the following criteria:

(1) the issue reports a problem with a typechecker (i.e., the problem occurs during the typecheck-

ing phase of compiling a Java program), such as a crash, false positive, or false negative.

(2) the issue’s reporter provided a non-minimal program on which the issue can be reproduced.

(3) the issue occurred in a released version of the typechecker.
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We collected 28 such issues: 2 bugs in the Java compiler, 9 from NullAway, and 17 from the Checker

Framework. We did not find any other bugs in these issue trackers that meet our inclusion criteria.

Most of these typechecker bugs (26 of the 28) were accompanied by a small test case. Since the state-

of-the-practice is manual test case reduction, these small, independent test cases were presumably

hand-minimized. They serve as ground truth for the output that TypeSlice should produce. By

coincidence, exactly half (14 of 28) of the bugs we found are false positives (i.e., a typechecker

issues an unexpected error); the other half are all crashes within the typechecker itself; we did not

find any false negative bugs that meet our inclusion criteria (probably because these checkers are

designed to minimize false negatives at the cost of more false positives). Our artifact contains links

to each issue, the test case that we extracted from the fix, the version of the typechecker with the

issue, and the reported issue’s symptoms from the issue tracker.

We then built a pipeline to run TypeSlice on the program that first exhibited each of these

issues (targeting the nearest enclosing method or field declaration to the place cited in the issue

description), re-run the version of the relevant typechecker from the time that the issue was reported

on TypeSlice’s output, and compare the result to the issue’s reported symptoms automatically. Our

artifact includes all of the scripts necessary to run this pipeline, which we also use as a continuous

integration build for TypeSlice itself.

To compare the results of the typecheckers on TypeSlice’s output to the reported symptoms, we

had to allow for some deviation: the output of the typecheckers (especially when they crash) directly

includes information specific to the program being analyzed, such as the line number at which the

problem occurred. To deal with this, we wrote regular expressions based on the issue logs to derive

a “signature pattern” for the cause of each issue; for example, for issues that cause the typechecker

to crash, the signature is the stack trace from the typechecker. We then used an automated script

to compare the outcomes of relevant typechecker for both the original program and TypeSlice’s

output, by checking whether running the typechecker on TypeSlice’s output matches the signature

pattern for each issue.

6.2 RQ1: Behavior Preservation
Table 1 contains the main results of our experiment. The headline result is that in approximate

mode, TypeSlice preserves the behavior of the target typechecker for 25 of the 28 targets (89%), even

without access to the classpath of the target program. With a classpath, TypeSlice can preserve

one more issue (26/28, 93%). This large percentage suggests that TypeSlice preserves typechecker

behavior most of the time, even on complex programs. There are a few things to note about the

table. For CF-577, CF-689, and CF-691, we only passed the file in which the problem occurs to

TypeSlice, after relocating it from the JDK to a new, synthetic package. For NA-323 and CF-4614, the

reporter provided a small but non-minimal test case; the actual target program was not open-source.

A human maintainer minimized the provided test case further.

6.2.1 Why Approximate Slicing Fails to Preserve Behavior. In this section, we describe the specific

causes of each case for which our approximate type-directed slicer fails to preserve the behavior of

the target typechecker. For each of these cases, we also attempted to use the exact mode of our

type-directed slicer; this succeeded in only one of the three cases.

NA-705. TypeSlice does not preserve NA-705 in approximate mode because NullAway expects

that a particular annotation is (only) a type annotation (i.e., the ambiguity described in section 4.2.6).

In exact mode, TypeSlice does preserve the typechecker’s behavior.

CF-577. Approximate slicing fails to preserve CF-577 because an unsolved inner class must be

placed inside a specific other unsolved class in order to trigger the bug (i.e., the ambiguity described
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Table 1: TypeSlice’s performance on historical Javac, NullAway (“NA”), and Checker Framework
(“CF”) bugs. “Kind” is the kind of bug: “FP” for false positive, or “Cr” for a crash. “LoC” is non-
comment, non-blank lines of code after running google-java-format [22]. “T. LoC” and “H. LoC”
are, respectively, the sizes of the TypeSlice-produced and human-written minimized tests. In the
“Pr.?” column, ✓means behavior is preserved in both modes; = in exact but not approximate mode;
and X in neither mode. The clock symbol in the last column indicates reduction time in seconds. In
the last row, the test cases sizes and run times are averages; others are totals.

Issue ID Source Kind Target Program LoC Pr.? T. LoC H. LoC �@0

JDK-8319461 javac FP mmm-property 7,970 ✓ 82 n/a 3

JDK-8288590 javac FP assertj 225,630 ✓ 36 36 14

NA-97 NA FP JDK 4,672,613 ✓ 111 13 49

NA-102 NA FP Caffeine 50,260 ✓ 67 9 5

NA-103 NA FP Caffeine 50,219 ✓ 286 n/a 11

NA-176 NA Cr Dropwizard 49,849 ✓ 205 14 5

NA-323 NA FP ? (proprietary) 69 ✓ 27 22 2

NA-347 NA FP otr4j 25,095 ✓ 71 8 4

NA-389 NA Cr acs-aem-commons 70,748 ✓ 115 32 6

NA-705 NA FP Caffeine 77,487 = 80 6 4

NA-791 NA Cr Caffeine 79,934 ✓ 34 18 6

CF-577 CF Cr JDK 60 X n/a 11 4

CF-689 CF Cr JDK 353 ✓ 320 12 25

CF-691 CF Cr JDK 3,045 ✓ 36 5 8

CF-1291 CF FP Daikon 119,563 ✓ 129 14 17

CF-3020 CF Cr guava 518,488 ✓ 55 10 12

CF-3021 CF Cr guava 518,479 ✓ 320 7 23

CF-3022 CF FP guava 518,479 ✓ 241 10 25

CF-3032 CF FP nomulus 169,783 X n/a 51 5

CF-3619 CF FP calcite 351,992 ✓ 161 20 26

CF-3850 CF Cr calcite 364,957 ✓ 119 11 28

CF-4614 CF FP ? (proprietary) 61 ✓ 14 21 2

CF-6019 CF Cr kafka-sensors 10,686 ✓ 42 5 4

CF-6030 CF Cr Cassandra 632,826 ✓ 97 19 35

CF-6060 CF Cr jOOQ 328,032 ✓ 54 6 25

CF-6077 CF FP Cassandra 633,142 ✓ 198 44 45

CF-6282 CF Cr Chronicle-Core 22,024 ✓ 29 17 4

CF-6388 CF Cr beam 827,527 ✓ 94 83 30

Totals and Averages: 28 issues 10,329,371 25 116 19 15

in section 4.2.4 and shown in fig. 7). In particular, continuing fig. 7’s example, triggering the bug

requires TypeSlice to place the InnerBanana class inside the Banana class. Instead, TypeSlice produces

two top-level classes (which otherwise have the correct content), and so the bug is not reproduced.

We tried running our exact slicer to resolve the issue, but because the bug is triggered by the JDK,

providing the whole JDK (in this case, via rt.jar, as this historical bug requires Java 8) as input

causes TypeSlice’s dependency Vineflower to run out of memory.

CF-3032. TypeSlice cannot process this target in both modes due to a limitation of TypeSlice’s

dependency JavaParser related to method references [23]: JavaParser’s symbol resolution does not

fully model Java’s search process for the correct method reference.
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6.3 RQ2: Running Time
We also evaluated how quickly TypeSlice runs on the target programs (last column of table 1). On

an ubuntu-latest GitHub Actions CI runner with 4 virtual CPUs and 16GB of RAM, the average

reduction time was 15 seconds (minimum 2 seconds, maximum 49 seconds). Note that the subject

programs are not trivial: most are in the hundreds of thousands of lines of non-comment, non-blank

code, and TypeSlice scales very well from small examples to large programs. TypeSlice’s speed

is an advantage of static program reduction: the slowest part of dynamic program reduction is

running the typechecker whose behavior we want to preserve, but TypeSlice does not need to run

the typechecker at all. Section 6.5 directly compares TypeSlice’s run time to dynamic program

reduction tools on a subset of the benchmarks in table 1.

6.4 RQ3: Similarity to Human-written Tests
To evaluate whether TypeSlice’s output program is similar to the test cases written by typechecker

maintainers, we 1) evaluated the size of the TypeSlice-produced test cases, and 2) manually examined

the test cases produce by TypeSlice and compared them to the human-written minimized tests. The

average difference between the size of the human-written test cases and the TypeSlice-produced test

cases is about 5x: the TypeSlice-produced test cases average 116 lines of non-comment, non-blank

code, while the human-written test cases average just 19. TypeSlice theoretically should never

produce smaller test cases than the humans, but in two instances it surprisingly did: JDK-8288590

and CF-4614. The reason for this in both cases is that the human-written “minimal” test case also

includes one or more interesting variations that the human maintainer wanted to make sure that the

typechecker could also handle—in other words, the human-written test is not really minimal at all.

Broadly speaking, the test cases produced by TypeSlice are larger since it is conservative about

what to keep: it never removes a program element that could contribute to a typechecker bug, even

if it does not contribute to the bug that is currently being targeted; in particular, TypeSlice-generated

tests tend to include things like complete synthetic definitions of used but not relevant annotations

(which a human would remove). The human maintainers are not so constrained. Qualitatively,

though, the TypeSlice-generated test cases are small enough and easy enough to understand that

we think they will be useful to typechecker maintainers. And, the TypeSlice-generated test cases

share other, qualitative similarities to the human-written test cases: for example, both are often

“unrunnable” (as discussed in section 3.3.1) in the sense that they lack any non-exceptional execution

traces. That is, both TypeSlice and the human maintainers test typecheckers with program snippets

intended only to trigger some specific behavior inside the typechecker.

6.5 RQ4: Comparison to Dynamic Program Reduction
Perses [7], Vulcan [20], and T-Rec [21] are state-of-the-art dynamic program reduction tools that

uses input grammars to generalize across programming languages. Vulcan [20] improves on the

core Perses algorithm’s reduction performance (i.e., it produces smaller programs); T-Rec [21]

further improves “canonicalization” performance, by reducing programs that differ syntactically

but not semanticly to the same output more often. All three of these tools are part of the same

open-source project [24], and are implemented as different command-line flags to the same tool. For

simplicity, we will refer to that tool as “Perses” throughout this section. It takes as input the target

program, a language grammar, and a “test script” that triggers an undesirable analysis behavior

that should be preserved. An advantage of all three Perses variants is that they are fully generic

over the target language and the analysis whose behavior is to be preserved, unlike TypeSlice,

which is restricted to typecheckers for a specific language (in our case, Java). For these experiments,

we used Perses version 2.0 (released January 10, 2025), which we downloaded from the project’s
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Table 2: Comparison of TypeSlice (“TS”), Perses (“P”), Vulcan (“V”), T-Rec (“TR”), and TypeSlice
followed by Perses (“TS+P”). Note the time may differ from table 1, as this table’s experiments ran
on a different machine. Bugs below the horizontal line were hand-combined into a single file. The
“*” marks a difference with table 1; see section 6.5.1 for the explanation. The “**” means that Vulcan
ran out of memory on our usual machine for this bug, so we ran it on an AWS r5.xlarge instance
with 32GiB of RAM and 4 vCPUs; time numbers are not directly comparable across machines.

Time (s) Output LoC Preserved?
Issue ID TS P V TR TS+P TS P V TR TS+P TS P V TR TS+P

CF-4614 2 48 4089 487 343 14 14 15 15 13 ✓ ✓ ✓ ✓ ✓
NA-323 2 242 3883** 424 205 27 8 6 8 8 ✓ ✓ ✓ ✓ ✓
CF-577 n/a 1044 3912 1471 n/a n/a 32 22 24 n/a X ✓ ✓ ✓ n/a

CF-689 11 375 3573 988 92 132 90 41 9 17 ✓ ✓ ✓ ✓ ✓
CF-691 4 2798 18242 4685 396 151* 167 164 167 134 ✓ ✓ ✓ ✓ ✓

GitHub page [24]. The experiments in this section (only) were conducted on a 2024 Macbook Air

with 16GB of Unified Memory.

Unfortunately, Perses has a technical design limitation that prevents it from minimizing most

of the bugs in table 1: it can only minimize the parts of a program stored in a single input file.

Because Java programs typically contain more than one Java file, the Perses implementation is

not suitable for solving the problem we are interested in (program reduction for Java typechecker

debugging) as an off-the-shelf tool. We suspect that this limitation of Perses is a historical artifact

of its envisioned deployment scenario: reducing fuzzer-generated C programs to human-readable

size in a CSmith [25]-like setup, for which multi-file reduction is not needed.

So, we instead did a case study that compares Perses and TypeSlice on the 5 bugs in table 1 whose

input we could combine into a single Java file. We began with the two bugs in our dataset that

already had single-file input programs (“CF-4614” and “NA-323”). We then tried to combine each

program in the dataset by hand into a single file, starting from the program with the smallest size

and proceeding towards the largest; we gave up once it became clear that no larger programs could

be so combined. We succeeded at combining just three programs into a single file; anecdotally,

namespace collisions become implausibly difficult to resolve for the larger benchmarks, as different

files import classes with the same names from different packages. For each of these five (two

single-file, three combined into a single file), we wrote a Perses test script that triggers the bug and

executed Perses, Vulcan, and T-Rec on each input program using the Java grammar that Perses

ships with; the results appear in table 2.

6.5.1 Results. At a high level, the results confirm our intuition: when successful, all three dynamic

reducers are dramatically slower than TypeSlice because they run the typechecker whose behavior

is to be preserved many times—e.g., Perses runs the analysis 237 times to minimize CF-4614. Of

the three, Vulcan is consistently the slowest, but it also sometimes achieves the best reduction

performance. Like TypeSlice, all three offer a soundness guarantee when the whole input program

is provided, but unlike TypeSlice they cannot be used to minimize incomplete programs. However,

they can be more precise than TypeSlice: the minimized test case that Perses finds for NA-323, for

example, is much smaller than the test case that TypeSlice finds, because TypeSlice’s test includes

getters and setters that are used by the constructor in which the bug occurs, but actually are not

required to trigger it; Perses deletes them entirely. CF-689 exhibits a similar phenomenon.

To our surprise, TypeSlice and the dynamic reducers produce similarly-sized outputs for CF-4614

and for CF-691. In CF-4614, TypeSlice removes a program element (a field) that Perses keeps (Perses

removes the package declaration and a few other small elements, like public and final modifiers, so
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the resulting files are the same size). On CF-691, Perses and TypeSlice produce relatively-similar

outputs, though TypeSlice’s is a bit smaller: TypeSlice removes the body of a method and a field

that Perses keeps, though neither is needed to reproduce the typechecker crash. The input file for

CF-691 in this experiment is subtly different than the input file used for the experiment in table 1, to

accommodate Perses’ inability to process incomplete programs: other parts of the java.util package

(which contains the input file) are imported explicitly in this experiment, whereas in table 1 they

are treated as reducible code. These imports allow Perses to do reduction at all (they are necessary

for compilation), but cause TypeSlice to retain more of the file (because TypeSlice assumes it cannot,

e.g., remove an abstract method from an irreducible imported class).

All three of Perses, Vulcan, and T-Rec can preserve CF-577’s behavior, unlike TypeSlice: TypeSlice

incorrectly moves an inner class (discussed further in section 6.2.1), but all three Perses variants

avoid the ambiguity that trips up TypeSlice due to their dynamic nature.

These results shows that in the best case scenario for TypeSlice, its outputs can be more-minimal

than the output of Perses (as we see in CF-4614 and CF-691); however, we expect the average case

looks more like NA-323, where the TypeSlice output is about thrice as large as the Perses output,

or like CF-689, where the best dynamic reducer (T-Rec) finds a program that triggers the bug of

only 9 lines, compared to TypeSlice’s 132. In other words, in the typical case dynamic reduction

produces test cases that are closer in size to the human-written minimized tests than TypeSlice’s

static reduction technique does, but at the cost of longer run time. Moreover, dynamic reduction’s

stronger guarantees about preservation make it a good choice when an absolute guarantee of

preservation is required and ambiguity makes static reduction fail, as we see for CF-577. However,

static reduction scales better: it can handle huge programs that are impossible to process with a

dynamic reducer. In this sense, the two approaches are complementary.

6.5.2 Combining TypeSlice and Dynamic Reduction. The direct comparison between TypeSlice and

Perses-based dynamic reduction tools in the previous section showed that TypeSlice is much faster,

but the output of dynamic reduction once it finishes can be smaller. However, the two techniques

need not be exclusive: if we first run TypeSlice and then a dynamic reducer on TypeSlice’s output,
we retain some of TypeSlice’s speed but benefit from more precise dynamic reduction. We did this

experiment for the bugs in table 2 (“TS+P” columns) by combining TypeSlice and (basic) Perses.

The results are encouraging: both tools together are faster than Perses alone, and the minimized

programs are at least as small as Perses’ output. For example, on CF-689, running TypeSlice and then

Perses produces a test case nearly as small as the T-Rec minimization, but takes only about 1/10th

of the time as running T-Rec. For larger programs, the combination should be commensurately

faster, since TypeSlice scales better than Perses with program size.

6.6 RQ5: Broad Applicability
The methodology in section 6.1 directly measures TypeSlice’s usefulness for the task that we

designed it for—minimizing historical typechecker bugs—but is limited in scope because of our

strict inclusion criteria. To give a better sense of the broader applicability of the tool, we designed

and carried out a larger experiment with TypeSlice that checks preservation of a simpler property

that is easy to check automatically: compilability. Our goal with this experiment is to give the

reader a sense of the scalability and broad applicability of the approach.

6.6.1 Methodology. We collected 32 Java projects from GitHub, using two approaches: we included

16 projects from the Defects4J [26] benchmark suite
1
, and we searched GitHub using Source-

Graph [27] public code search for Java repositories with at least 15 stars, and then sampled another

1
All of the projects except closure-compiler, which caused issues with our experimental setup.
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16 repositories from the result by convenience. We excluded repositories during this step that were

collections of small snippets (for example, a collection of algorithms from a textbook) rather than a

single, cohesive project. We also excluded all projects that did not successfully build using a single

command on the server we used for these experiments, which was running Arch Linux with a Java

11 JDK. These 32 repositories together contain 1,892,104 lines of non-comment, non-blank Java

code. For each of these projects, we automatically extracted a list of all valid method signatures

(there were a total of 49,577 across all of these projects), and triggered a run of TypeSlice targeting

each such signature. We attempted to compile the resulting TypeSlice-minimized program.

6.6.2 Results. Across all projects, TypeSlice produces compilable output for 73.0% of method

signatures (36,175 of 49,577). Of those that could not be successfully compiled, TypeSlice crashes for

about half (7,214 of 13,402, 53.8%) and produces non-compilable output for the other half (6,188 of

13,402, 46.2%). Random sampling of failures suggest that effectively all of them are caused by bugs

in the implementation of the tool, rather than fundamental limitations of our approach. Moreover,

failures (especially crashes) are concentrated in just a few projects: JFreeChart alone triggers 3,372

of the 7,214 crashes we observed (46.7%), and just four of the 32 projects are responsible for 3,334

of the 6,188 compilation failures (53.9%).

7 LIMITATIONS AND THREATS TO VALIDITY
7.1 Threats to Validity
A threat to the external validity (generalizability) of our experiments is that we only tested TypeSlice

on three closely-related type systems. Further, most (17 of 28) of the bugs we tested on came from

the Checker Framework’s issue tracker, so our approach may only be effective for pluggable

typecheckers like the Checker Framework. It is also possible that some of our proxies may not be

good—especially the size of the TypeSlice-generated test cases for usefulness to analysis developers.

7.2 Limitations
The most serious limitation of type-directed slicing is that it is only useful for preserving the

behavior of typecheckers, not of other kinds of program analyses. Another serious limitation of

type-directed slicing is that it is not useful for debugging bugs in the modularity of a typechecker—if

the type rule dependency map is not respected, the type-directed slicer can offer no guarantees

even in exact mode. Another, related limitation is the need to define the type rule dependency map

in the first place: building a type-directed slicer requires a formalism like type rules. In practice,

this means that type-directed slicing is only useful in conjunction with typecheckers, and not with

other kinds of program analyses (though we hope to extend the underlying ideas to other kinds of

analyses with well-defined formalisms in future work; see section 9.1).

Like any practical tool, TypeSlice can have bugs which compromise the theoretical guarantees

of type-directed slicing. We have mitigated this problem by testing TypeSlice: its test suite contains

211 small, synthetic test programs totaling 2,884 lines of non-comment, non-blank code. We also run

integration tests on the 28 bugs in table 1 on each change to TypeSlice as a continuous integration

build. Despite our efforts, bugs like the one that prevents TypeSlice from processing issue CF-3032

and those that caused the compilation failures in section 6.6 sometimes do occur.

Another limitation is that while TypeSlice can handle incomplete programs, those programs must

still be well-formed: that is, they must be valid in the language’s grammar and therefore parseable to

an abstract syntax tree, and they must be subprograms of some program that typechecks. TypeSlice

will fail if either of these assumptions is violated: if the program cannot be parsed, TypeSlice will

fail immediately; if the program could not typecheck, then TypeSlice’s output probably will not

typecheck, either.
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8 RELATEDWORK
Type-directed slicing is related to work in program reduction, in traditional slicing, and in incre-

mental compilation.

8.1 Program Reduction
Other researchers have investigated the problem of program reduction in the context of analysis

debugging and built practical tools like C-Reduce and Perses [6, 7, 20, 21, 28–31]. These works are

united by their dynamic approach to the problem: their analysis strategy is based around a delta-

debugging-like divide-and-conquer core [8]; most recent research contributions are refinements

to this basic algorithm that improve performance, make the approach more language-agnostic,

and/or exploit program structure to avoid testing syntactically-invalid programs. Recent work has

also proposed using machine learning models to guide these dynamic tools [32, 33]. We compare

directly to Perses [7] and its follow-up works Vulcan [20] and T-Rec [21] in section 6.5. The most

closely-related work to ours from this line of work is JReduce [29] which, like TypeSlice, uses

dependency relationships in its input program to aid in reduction. However, JReduce computes

dependency closures at the file or class level rather than being type-directed, like TypeSlice. We

could not do a direct comparison with JReduce as it operates on bytecode rather than source code.

A type-directed slicer is a static analysis that solves the same problem, and offers different trade-

offs compared to its dynamic cousins described in the previous paragraph. For example, the user of

a type-directed slicer need not run the analysis being debugged, which makes type-directed slicing

much faster in practice than the dynamic approach. If running the typechecker is expensive (as may

be the case if, for example, it is enforcing a dependent type system), this run time becomes unwieldy

in practice quickly. The only other extant static analysis for this problem, to our knowledge, is

Trimmer [34], which removes program paths that are not relevant to some target assertion that

a program analyzer is trying to prove or disprove. Like TypeSlice, Trimmer is inspired by slicing: it

uses traditional slicing techniques to slice away paths whose effects cannot change the truthiness

of the assertion; TypeSlice’s approach of slicing on the modularity boundaries of the type rules is

technically quite different. Like our approximate slicer, PAClab’s Transformer component [35] has

the ability to “automatically make Java classes compilable outside of their host project.” However,

it does not guarantee preservation of compile-time semantics, unlike our exact approach.

8.2 Slicing
Since it was first introduced byWeiser [9], researchers have investigated awide variety of techniques

related to program slicing: too many to discuss here. We refer the interested reader to surveys on

the topic [36–39]. The key difference between our type-directed slicing approach and “traditional”

slicing techniques is our focus on slicing to preserve compile-time rather than run-time behavior;
as far as we are aware, prior work in slicing has not attempted to preserve the compiler’s (or some

other typechecker’s) behavior, as we do. The Symbiotic symbolic execution tool [40] uses slicing in

a similar way to remove “unrelated” parts of the program before running a static analysis. It uses a

traditional slicer, though, because the goal is to then symbolically execute the program.

8.3 Incremental Compilation
Modern IDEs require a form of incremental compilation based on a specific target method—in

particular, the method in which the user is currently making edits—to facilitate auto-completion,

error-reporting, etc. Significant research effort has gone into developing incremental parsers for this

scenario [41–43]. Modern IDEs use language servers to ease the implementation of such tools [44].

However, the compilers that IDEs rely on (e.g., Roslyn for C# [45] or the TypeScript compiler [46])
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are fundamentally different than a type-directed slicer: while they start at a particular location

and build up their internal representation of the program outwards, like TypeSlice, they are 1)

still interested in preserving the run-time behavior of code that is not directly used by their target

method, and 2) for speed, they rely on previous, cached compilation passes. TypeSlice does neither,

because it is targeted at exactly the problem of preserving the behavior of a semantic analysis

(in particular, a typechecker). The Roslyn developers have said that they avoided attempting

incremental semantic analysis, because they were concerned that the implementation would be too

complex [47]. A type-directed slicing approach could enable them to do so in the future.

9 FUTUREWORK
9.1 Generalizability to Analyses Other Than Type Systems
Our claims in this paper are limited to type systems: we have not attempted to show that type-

directed slicing is useful for any other kind of analysis. In this section, though, we speculate on

whether we could build something like a type-directed slicer for other kinds of analyses in the

future, based on the properties of type systems that type-directed slicing relies on. In particular,

type systems are intra-procedural program analyses: that is, they examine each program component

in isolation and use summaries (type annotations) to communicate information across procedure

boundaries. This property is a key requirement for type-directed slicing. The following (informal)

definition of modularity captures this intuition:

Definition 9.1. A modular program analysis directly reasons about only the code in one target

component𝐶 of the program at a time. A modular analysis can request and use summaries of other
components that are used by 𝐶 , but it does not and cannot directly reason about the code in those

other components (instead, it must trust the summaries).

Type-directed slicing might plausibly generalize to any analysis that 1) meets this definition

of modularity, and 2) for which we can construct a well-defined dependency map from some

formal description of the analysis. The reason that we focus on typecheckers in this work is that

constructing such a map for them is straightforward: the derivation from the type rules is obvious.

Some other analyses besides type systems meet this definition of modularity, too, and therefore

might be able to use a technique like type-directed slicing in the future, if we can construct a

dependency map for them. The key barrier is that few other analyses have such well-defined

formalisms from which it is straightforward to extract a dependency map. For example, heuristic

bug-finding tools like FindBugs [48] or the dataflow analyses built into modern IDEs (e.g., [49]) are

definitely modular, but typically lack a formal description. And, some sound verification tools that

prove user-written specifications, such as OpenJML [50] or KeY [51], are modular because they rely

on user-written specifications to communicate across method boundaries; because these tools are

based on a core logic (e.g., OpenJML is in the Larch family of specification languages [52]), it might

be feasible to derive a dependency map from their formalisms. We leave doing so to future work.

However, it would be implausible to extend our type-directed slicing approach to some analyses,

because those analyses are fundamentally non-modular. For example, Facebook’s Infer tool [5] is

non-modular because its analysis is inter-procedural. Other examples include analyses backed by

reduction to graph reachability (i.e., IFDS/IDE [53, 54]), such as FlowDroid [55] or CogniCrypt [56].

9.2 Other Applications
Static program reduction via type-directed slicing might be useful for other software engineering

tasks that involve typecheckers besides debugging, which we plan to explore in future work.

For example, when generating code using a large language model (LLM), it may be desirable

to use one or more typecheckers to discard incorrect code generated by the LLM. One issue with
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this general approach is that the context window for LLMs may not be large enough to include

the entire program; recent work [57] has proposed using (dynamic) program reduction to help. A

type-directed slicer could provide the LLM with the slice of the codebase related to any particular

warning from the typechecker, making it easier and quicker for the LLM to fix the warning.

boolean xIsNull = x == null;
if (!xIsNull) { x.m(); }

(a) Extant nullability type-
checkers would warn here. . .

if (x != null) { x.m(); }

(b) . . . but not here.

Fig. 8: Two semantically-equivalent pro-
grams that dereference x if it is non-null.

Another possible future application of type-directed

slicing is in making it practical to reduce false positives

from typecheckers by trying to typecheck semantically-

equivalent refactorings. For example, consider the two

semantically-equivalent programs in fig. 8. Figure 8b uses

a simple nullability check before dereferencing x, while

fig. 8a stores the nullability of x in a boolean and then

checks that boolean instead. A nullability typechecker

like the Checker Framework’s Nullness Checker [10, 58]

will warn about the program in fig. 8a, but not the pro-

gram in fig. 8b, because it does not reason about whether

specific booleans are connected to nullability. We can use

a type-directed slicer to automate the discovery that a

warning like this one is a false positive, using the following steps. First, use TypeSlice to create a

small, independently-compilable program that exhibits the warning. Then, apply each refactoring

from a library of semantically-equivalent program transformations to this reduced program and

re-run the typechecker; if any one refactoring leads the typechecker to no longer issue the warning,

then the warning must have been a false positive (assuming the typechecker is sound). We could

use a system like this one to avoid showing warnings that are definitely false positives to the

developer, making typecheckers more useful.

10 CONCLUSION
We have introduced type-directed slicing, a practical static program reduction technique that can

preserve the behavior of a typechecker. Compared to the state-of-the-art dynamic tools based on

delta-debugging-like algorithms, our static program reduction technique has predictable perfor-

mance that is unrelated to the cost of running the typechecker whose results are to be preserved.

Our approximate slicing technique builds on this advantage by adding the ability to process incom-

plete programs, which makes it easy to apply to the bug reports that users of static analysis tools

typically provide. Although approximate slicing does not guarantee that typechecker behavior

is preserved, our experiments show that on a significant collection of real bugs reported in Java

typecheckers, TypeSlice’s approximate mode usually preserves the relevant behavior in practice.

DATA AVAILABILITY
All data and code used in this paper is open-source and publicly available. The implementation of

the TypeSlice tool is available at https://anonymous.4open.science/r/typeslice-issta25. The scripts

and data used to produce the experiments in section 6 are available at https://anonymous.4open.

science/r/typeslice-eval-scripts-issta25.
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