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Null-pointer exceptions are serious problem for Java, and researchers have developed type-based nullness
checking tools to prevent them. These tools, however, have a downside: they require developers to write
nullability annotations, which is time-consuming and hinders adoption. Researchers have therefore proposed
nullability annotation inference tools, whose goal is to (partially) automate the task of annotating a program
for nullability. However, prior works rely on differing theories of what makes a set of nullability annotations
good, making comparing their effectiveness challenging.

In this work, we identify a systematic bias in some prior experimental evaluation of these tools: the use of
“type reconstruction” experiments to see if a tool can recover erased developer-written annotations. We show
that developers make semantic code changes while adding annotations to facilitate typechecking, leading
such experiments to overestimate the effectiveness of inference tools on never-annotated code. We propose a
new definition of the “best” inferred annotations for a program that avoids this bias, based on a systematic
exploration of the design space. With this new definition, we perform the first head-to-head comparison of
three extant nullability inference tools. Our evaluation showed the complementary strengths of the tools and
remaining weaknesses that could be addressed in future work.
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1 Introduction
Null-pointer exceptions are still a serious problem in Java, despite decades of research [Banerjee et al.
2019; Dietl et al. 2011; Hovemeyer et al. 2005; Karimipour et al. 2023; Loginov et al. 2008; Madhavan
and Komondoor 2011; Papi et al. 2008; Siddiqui and Kellogg 2024]. Static analysis is a popular
way to detect possible null-pointer exceptions before they happen. Nullability annotations like
@Nullable and @NonNull can improve the effectiveness of common nullability checkers. Further,
these annotations are required to get the full benefit of tools that not only detect some null-pointer
exceptions but also claim to detect most or all possible null-pointer exceptions, such as pluggable
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typecheckers like Uber’s NullAway [Banerjee et al. 2019], Meta’s Nullsafe [Pianykh et al. 2022], or
the Checker Framework’s Nullness Checker (“CFNullness”) [Dietl et al. 2011; Papi et al. 2008].

Several recent works [Karimipour et al. 2023; Kellogg et al. 2023; Siddiqui and Kellogg 2024] have
proposed static nullability annotation inference techniques that take as input a program without
nullability annotations and output a set of inferred annotations for that program. However, each
technique is based on a different underlying inference strategy:

• Nullaway Annotator [Karimipour et al. 2023] treats a nullability checker as a black box fitness
oracle: it places annotations that minimize the total number of warnings from the checker.

• Checker Framework Whole-Program Inference (WPI) [Kellogg et al. 2023] bootstraps its infer-
ence from the local dataflow analysis that CFNullness already performs during typechecking.

• NullGTN [Siddiqui and Kellogg 2024] uses a deep-learning model trained on open-source code
from GitHub to place nullability annotations in the same places where its model predicts that
humans would.

Each technique relies on a different theory of which annotations are desirable. Nullaway Anno-
tator assumes that the best annotations minimize errors from a checking tool. WPI assumes that
the best annotations encode which program locations might actually be null. NullGTN assumes that
the best annotations are similar to those that humans write. These differing assumptions lead to
inference tools that may behave quite differently in practice. This work aims to explore the design
space of nullability inference tools and formalize what makes a set of annotations “good.”

The papers introducing these techniques evaluated each in isolation. Our work contains the first
head-to-head comparision between them on the same large set of benchmark programs. Designing
a fair head-to-head comparison between these tools to properly evaluate their usefulness is not
simple. The key difficulty is that the envisioned deployment scenario for such a tool is annotating a
program that has not been checked by a nullability detection tool. When evaluating an inference tool,
though, an experimenter desires ground-truth annotations: that is, annotations that are known to be
correct, which the experimenter can use to evaluate the quality of the tool’s annotations. Therefore,
some prior works have done type reconstruction experiments, wherein a tool is evaluated by 1)
removing the ground-truth annotations written by a human, 2) running the tool to produce a set of
annotations, and 3) comparing the tool-generated annotations to the ground-truth annotations.
The type reconstruction experimental design assumes that developers do not make changes

to their code as they add annotations, and that using a nullability checking tool does not impact
coding style. These assumptions are not obviously true: e.g., developers could make code changes
to suppress false positive tool warnings [van Tonder and Le Goues 2020] or fix real bugs exposed
by the tool. So, type reconstruction experiments could introduce a systematic bias in the evaluation:
inference for code that has been annotated by a human could be easier than inference for code
that has never been annotated. We show empirically in section 3 that this systematic bias exists
for nullability inference: developers make other semantic changes to code as they annotate, and
these changes make both checking and inference more effective. Evaluating a nullability inference
tool on a previously-annotated benchmark therefore overestimates its usefulness for its true task of
reducing developer workload when annotating code that has not been annotated before. While
we only focus on nullability inference, the same bias may exist in other kinds of type inference
experiments (see section 3.3.1).
It is not simple to correct this bias and fairly compare inference tools on benchmarks with no

ground-truth annotations.We address this problem by constructing amodel of an idealized inference
tool and defining the “best” nullability annotations for a program, based on a set of principles for
what makes an annotation “good.” While these principles do not fully capture developer intent, they
are useful guidelines for evaluating annotation quality. We then ran each inference tool on a large
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dataset of previously-unannotated Java programs, and used our definition to 1) manually evaluate
the quality of (a sample of) each tool’s annotations, and 2) define two automatically-measurable
proxies that give more insight into each tool’s performance. Our results show that while the three
studied tools are complementary, the Nullaway Annotator tool produces the best output overall.
Nevertheless, we conclude that no tool fully solves the problem of inferring “good” nullability
annotations, and point to promising directions for future work. In summary, our contributions are:

• experimental confirmation that type reconstruction experiments overestimate the effectiveness
of nullability annotation inference tools (section 3);

• an exploration of the design space of nullability annotation inference tools and evaluations, with
an emphasis on how to fairly evaluate these tools in the absence of ground-truth annotations
(section 4);

• an evaluation of three extant nullability annotation inference tools using a new methodology
that avoids the bias inherent in annotation reconstruction experiments (section 5).

2 Background: Design Space of Extant Inference Tools
This section explains the design philosophies of the studied nullability annotation inference tools:

• Checker Framework Whole-Program Inference (WPI) [Kellogg et al. 2023], whose design
philosophy emphasizes inferring annotations that can be derived via dataflow analysis;

• Nullaway Annotator [Karimipour et al. 2023], whose design philosophy emphasizes inferring
annotations that minimize a checking tool’s warnings; and

• NullGTN [Siddiqui and Kellogg 2024], whose design philosophy emphasizes inferring the
annotations that a human would have written.

After discussing the extant tools, we discuss how the tools were evaluated, with a focus on to
what extent the evaluation of each tool in prior work is impacted by reliance on type reconstruction
experiments (section 2.4); we assess the potential bias in such experiments in section 3.

2.1 Checker Framework WPI
Checker Framework Whole-Program Inference (WPI) [Kellogg et al. 2023] is a type inference
algorithm designed to infer type qualifiers for any pluggable type system. WPI operates at the
typechecking-framework level and leverages the existing local inference capabilities of the type-
checkers to derive a global inference algorithm. WPI iteratively uses locally inferred types to
generate method, class, and field qualifiers, which are then refined through subsequent iterations
to a fixed point.

The animating design philosophy of WPI is reusing dataflow analysis work that a typechecker is
already doing to infer annotations. For nullness, WPI infers annotations based on the expression
nullability facts computed by CFNullness. For example, if an expression assigned to a field might
be nullable, WPI will infer that the field should have an @Nullable annotation. WPI supports all of
the annotations supported by CFNullness (not just @Nullable), including pre- and post-condition
annotations on methods, initialization annotations on method parameters, and monotonically
non-null fields [CF Developers 2024]. WPI inherits the conservatism of CFNullness: if CFNullness’s
dataflow analysis suggests that any flow into a program element is possibly nullable, then WPI will
always make that program element @Nullable.

Figure 1 is an example that WPI handles well. The data field is initialized lazily; code should call
the lazyInit method before dereferencing it. WPI correctly infers a @Nullable annotation for the
field. It can also infer an @EnsuresNonNull annotation for lazyInit, capturing the fact that data
is always non-null when the method returns; this annotation lets CFNullness verify the code.
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class DataHandler {

+@Nullable Data data = null;

+@EnsuresNonNull(expr={"this.data"})

void lazyInit() {

if (data == null)

data = new Data(...);

}

String serialize() {

lazyInit();

return data.toString(); // safe

}

}

Fig. 1. Example where WPI correctly infers nulla-
bility annotations.

class MyActivity {

Name name;

+@Nullable Address addr;

MyActivity() {

name = null; addr = null;

}

@Initializer

void onStart() { name = defaultName(); }

void doFirst() { name.showFirst(); }

void doLast() {

name.showLast();

if (addr != null) addr.show();

}

}

Fig. 2. Example where Nullaway Annotator cor-
rectly infers nullability annotations.

2.2 Nullaway Annotator
Nullaway Annotator (Annotator) [Karimipour et al. 2023] is a tool to infer annotations required
to enroll programs into NullAway checking [Banerjee et al. 2019]. Annotator aims to infer a set
of @Nullable annotations that minimizes the number of errors reported by NullAway. Treating
NullAway as a black box, Annotator computes annotations to locally resolve each reportedNullAway
error. Since applying these annotations may lead to new NullAway errors, Annotator uses a
backtracking search to explore sets of annotation fixes to some depth limit, in the end retaining the
fixes that reduced NullAway errors the most.
The hypothesis behind Annotator’s approach is that if adding a @Nullable annotation causes

more errors than it resolves and those new errors cannot also be resolved by adding more annota-
tions, it may reflect a contradiction in the program’s assumptions. In such cases, developers may
prefer not to add @Nullable and instead address the issue via a different annotation, rewriting
the code, or a warning suppression (if the code is correct but cannot be verified). However, this
hypothesis was not experimentally evaluated by the tool’s authors [Karimipour et al. 2023]. The key
difference between Annotator and WPI is that Annotator does not always encode the nullability
of a program element, as judged by the underlying checker, into an annotation due to this error
minimization algorithm.
Figure 2 gives an example that mimicks the structure of Android Activity classes [Google

2024a] that Annotator handles well. The name and addr fields are both initialized to null in the
constructor. However, name is initialized in the onStart method, which runs early in the Android
activity lifecycle [Google 2024b]. Hence, doFirst and doLast can rely on name being initialized and
dereference it without a null check. Annotator’s heuristic to minimize errors correctly handles this
case, as making name @Nullable removes one error in the constructor but creates errors at the two
dereferences. NullAway supports the @Initializer annotation on onStart to capture its intended
usage and remove the constructor error (though Annotator does not infer this @Initializer

annotation, it can in other cases [Karimipour et al. 2023]). Annotator correctly annotates addr as
@Nullable. Note Annotator’s error minimization technique does not lead to the desired result for
fig. 1. Annotator sees that making data @Nullable increases the error count and avoids it. But
this approach hides errors if a lazyInit call were missing before a use of data. In contrast, WPI’s
technique does not work as desired for fig. 2; it makes name @Nullable, when it cannot be null at
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its uses due to initialization in onStart. Our work is the first to study how this tradeoff impacts
results on real benchmarks.

2.3 NullGTN
NullGTN [Siddiqui and Kellogg 2024] is machine-learning-based nullability inference tool based
on the Graph Transformer Network (GTN) architecture. It uses a novel representation called NaP-
AST (Name-augmented, Pruned Abstract Syntax Tree), which encodes minimal dataflow hints to
enhance inference.

The key principle of NullGTN’s design is emulating the places that humans would write nullability
annotations, without regard for the semantics of a checking tool. This principle informs the data
used to train NullGTN: any code that contained a nullability annotation was included, whether or
not the code passed a nullness checking tool. The authors did not compute exactly howmuch of their
training data came from code annotated for a checking tool, as opposed to just for documentation.
But, given that use of type-based nullness checking tools is not yet widespread, and that the dataset
contains over 32,000 classes, it is reasonable to infer that a significant portion of their data set is
code annotated primarily for documentation purposes.

public int sumLengths(int +@Nullable [] v1,

int +@Nullable [] v2) {

int result = 0;

result += (v1 == null) ? 0 : v1.length;

result += (v2 == null) ? 0 : v2.length;

return result; }

Fig. 3. Example where NullGTN correctly infers anno-
tations.

Unlike the other tools, NullGTN can anno-
tate the parameters of entrypoint methods—
that is, methods intended to be called from
outside the program—even if the program un-
der analysis contains no calls to those meth-
ods. Consider the library method (based on
one from our study) in fig. 3. It is clearly
safe to pass null parameters to sumLengths.
NullGTN can infer @Nullable annotations
for the parameters without observing any
call sites to sumLengths, while WPI and An-

notator must observe calls passing null to infer these annotations. Such entrypoint APIs were the
single largest cause for WPI to fail to infer annotations in the original WPI paper’s experiments [Kel-
logg et al. 2023, Table III], and in this paper we study the impact of this potential advantage in
practice.

2.4 Prior Evaluations
2.4.1 Checker Framework WPI. WPI was evaluated on 12 previously-annotated, open-source
projects that each typecheckedwith at least one pluggable typechecker (11 of themwith CFNullness).
The evaluation used type reconstruction experiments: the authors removed the human-written
annotations in each benchmark, ran their inference tool (in this case WPI), and compared the
inferred annotations to the human-written annotations. Specifically, they measured the number
of inferred annotations, the percentage of human-written annotations WPI could infer, and the
number of typechecking errors before and after inference. The results showed that WPI inferred
39% of human-written annotations on average and reduced typechecking warnings by 45%.

2.4.2 Nullaway Annotator. In the evaluation of Nullaway Annotator, the authors used 14 open-
source Java projects from GitHub that had not been annotated for nullability before. The key metrics
for evaluation were the number of NullAway errors after inference, the percentage reduction in
errors, and the performance of the tool (i.e., run time). In its best configuration, Annotator averaged
an error reduction of 69.5% across the open-source benchmarks.
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2.4.3 NullGTN. The evaluation of NullGTN used 12 open-source projects from the original Null-
Away [Banerjee et al. 2019] study, which were previously annotated for nullability; the NullGTN
model was compared to two other candidate machine-learning models. Each project was checked
with NullAway in three configurations: with the original human-written annotations, after re-
moving all human-written annotations, and after using each model to re-annotate the code. They
measured precision and recall of the model’s annotations compared to the human-written annota-
tions (another type reconstruction experiment), and reduction in the number of warnings issued
by NullAway after each model’s annotations were applied. NullGTN outperformed other models,
achieving a recall of 89% and a precision of 60%, reducing the number of NullAway warnings by
60%.

2.4.4 Summary of Bias in Prior Evaluations. Both the WPI and NullGTN evaluations used type
reconstruction experiments: given benchmarks that passed a checker, they assessed inference
effectiveness based on how well the tool recovered human-written annotations. We shall show in
section 3 that this methodology introduces a systematic bias in the experiments: when adopting a
nullness checker, programmers not only add nullability annotations, but also modify parts of the
code (e.g., adding null checks) to satisfy the checker. We show that these code modifications make
the checking and inference problems easier, thereby biasing the experiment away from a realistic
deployment scenario, where the target program has never been modified to support typechecking.

In the Nullaway Annotator evaluation, the authors did not perform type reconstruction experi-
ments, avoiding the bias above. However, their approach solely assessed inference effectiveness
by measuring the NullAway error reduction after inference. Implicitly, this methodology assumes
that a larger NullAway error reduction indicates the inferred annotations are better, but their work
does no evaluation of annotation quality to substantiate this assumption.

3 Analysis of Bias in Type Reconstruction Experiments
To investigate systematic bias in type reconstruction experiments, we performed a study on projects
used in prior experiments. Our hypothesis was that using previously-checked code simplifies the
checking and inference tasks versus never-checked code, the envisioned target for nullability
inference tools. Specifically, we aimed to answer these research questions:

RQ1 When developers verify their code using a nullability checker, do they make code changes
beyond adding annotations? If so, what kinds of changes do they make?

RQ2 Do the code changes, if they exist, improve the effectiveness of nullability checkers?
RQ3 Do the code changes, if they exist, improve the effectiveness of nullability inference tools?

“Yes” answers to these questions indicate that using already-checked code to evaluate a nullability
inference tool is not a good choice, since developers have already resolved some challenging issues
that would still be present in unannotated codebases that have not passed nullness checkers. Note
that the goal of this sub-study is not to compare the inference tools but to analyze the results of
running different combinations of checkers and inference tools on previously-checked programs to
investigate the systematic bias we believe exists in type reconstruction experiments.

3.1 Methodology
We selected benchmarks from prior type reconstruction experiments (section 3.1.1). We ran each
inference tool (Nullaway Annotator, WPI, and NullGTN) and checker (CFNullness and NullAway)
on the benchmarks using the procedure in section 3.1.2. We collected raw data (section 3.1.3) and
calculated the evaluation metrics (section 3.1.4). Section 3.2 reports the results, section 3.3 discusses
how the results show bias in prior evaluations.
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Table 1. Java benchmarks used in the bias illustration study, showing the original checker used to type-check
each project (“O.C.”), the total non-comment, non-blank lines of code (“LoC”) in the post-check version, and
error counts before inference for both pre-check (“PreV”) and post-check (“PostV”) versions of the benchmarks
across CFNullness (CF) and NullAway (NW).

Benchmark O.C. LoC CF PreV CF PostV NW PreV NW PostV
Butterknife CF 2332 32 32 64 61
Cache2k CF 2632 68 69 41 42

NW 70 68 41 41
FloatingActionButtonSpeedDial NW 8407 50 50 29 29
Jib NW 8351 241 237 60 56
Meal-planner NW 1200 31 12 20 3
Nameless CF 1934 27 27 21 21
Picasso NW 8698 287 266 55 50
Table-wrapper-api CF 1484 61 10 12 8
Table-wrapper-csv-impl CF 950 16 25 4 6
Total LoC/Avg. Errors: 35988 88.3 79.6 34.7 31.7

3.1.1 Benchmark Selection. Our benchmarks in this sub-study are Java projects that were manually
annotated to satisfy NullAway or CFNullness. We considered 23 candidate benchmarks from prior
type reconstruction experiments: 11 from the WPI study [Kellogg et al. 2023], and 12 from the
NullGTN study [Siddiqui and Kellogg 2024]. We narrowed the set to projects for which we could
identify commits clearly corresponding to before and after the nullness checkers were introduced.
We searched for commits where nullability annotations were added, checker dependencies were
introduced, and code changesweremade to address nullability issues.We only included a commit if it
contained specific evidence of its relevance to nullness checking (e.g., a commit message mentioning
fixes for checker errors). Projects in which nullability checking was introduced over multiple small
commits, interspersed with many unrelated changes, were excluded to avoid confounds. 13 of the
23 candidates were excluded based on these criteria. We also excluded one project (Caffeine) as it
caused WPI to crash. For the Cache2k project, the developers initially used NullAway to verify their
program, but later switched to CFNullness; we included each version as a separate benchmark.
For each benchmark, we chose commits corresponding to the pre- and post-check verion of

the code. In most cases, we chose the commit immediately preceding the post-check code as the
pre-check code. In cases where nullability changes were spread over multiple commits, we discussed
and came to consensus on the best pre- and post-check versions, documenting our reasoning.

Our final list of 9 projects is provided in table 1, along with details on which checker was initially
used to type check each project and the total non-comment, non-blank lines of code for the post-
check version. Note that almost all of the selected benchmarks had some nullability annotations
before being checked. We manually inspected the related build scripts and concluded that in most
cases, these annotations were added for documentation purposes. However, the projects Table-
wrapper-api and FloatingActionButtonSpeedDial had used FindBugs [Pugh et al. 2008] as a checker
before, and Nameless had been checked by JetBrains’ nullability tools [JetBrains 2006]. In keeping
with our choice to include both versions of the Cache2k project, we still include these projects.

3.1.2 Experimental Procedure. To inspect the differences and code changes between pre- and
post-check versions, we performed the following steps: 1) Count the nullness annotations and
nullness-related @SuppressWarnings in both pre- and post-check versions. 2) Remove all such
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annotations from both versions, and also remove comments, empty lines, and all import statements.
3) Calculate the diff between the versions. 4) Manually categorize each nullability-related change.

Then, for each benchmark, we did the following to evaluate checking and inference effectiveness:
For the pre-check version: 1) Remove existing annotations, including @SuppressWarnings as it

prevents checkers from analyzing certain parts of the code. 2) Run the checkers (CFNullness and
NullAway). 3) Run inference tools Nullaway Annotator, WPI, and NullGTN. 4) Run the checkers
on the annotated versions created by the tools in step 3.
For the post-check version: 1) Run the checkers. 2) Trim the existing annotations including

@SuppressWarnings. 3) Run the checkers on the trimmed version. 4) Run the inference tools on
the trimmed version. 5) Run the checkers on the versions created by the tools in step 4.

3.1.3 Data Collection. To compare the pre- and post-check versions, we counted the number of
added annotations and the occurrences of each category of nullability-related code change in the
post-check version. After each run of the checkers in the above steps (section 3.1.2), we logged the
number of nullability errors emitted by the checker.

3.1.4 Evaluation Metrics. We used the number of errors emitted by the checkers as our main
evaluation metric in this sub-study, as a useful proxy metric for the effectiveness of the checkers
(further discussion in section 5.2.2). We use relative error reduction to compare configurations. For
example, if CFNullness reports 15 errors on the pre-check version of a benchmark and 10 on the
post-check version, the error reduction is

( 15−10
15

)
× 100 = 33.3%.

3.2 Results
3.2.1 RQ1. Table 2 shows our categorization of the differences between the pre- and post-check
version of each benchmark. The data include how many @SuppressWarnings, @Nullable, and
@NonNull annotations were added, and also the number of code changes in each category that we
identified. The results show that code changes went beyond just adding nullability annotations.
Many null checks were added (C1, e.g., if (x != null) { ... }) to guard dereferences. Calls to
Objects.requireNonNull (C2) were used to fail fast when unexpected null values are encountered.
Programmers also add field initialization (C3), mark fields as final (C4), modify parameters or
types in method signatures (C5), use this.X instead of X in constructors (C6), define new methods
or constructors (C7), adjust method arguments when calling methods (C8), change the return value
when returning something while preserving the return type (C9), and changing the type of the
fields (C10). Beyond the categorized code changes, many other changes (Ot in table 2) do not fit
neatly into the categories (C1-C10). For example, in Meal-planner, field names were changed, and
the data representation was updated, such as replacing standard collections with immutable data
structures like ImmutableMap. In Butterknife, programmers modified the logic of control structures,
including changes to if statements and for loop conditions. Our artifact describes each change.

These results show that programmers not only add annotations but also modify their code when
integrating a checking tool. We hypothesized that they made these changes to resolve checker
errors. To test this hypothesis, we next evaluated whether the code changes make checking simpler.

3.2.2 RQ2. To investigate whether these code changes contribute to more effective typechecking,
we analyzed the error counts from the checkers on the pre- and post-check versions of the bench-
marks (with nullability annotations trimmed) before applying any inference tools. Table 1 (four
right-hand columns) shows that the number of errors in the pre-check version of most benchmarks
is higher than in the post-check version, for both checkers. For example, in the Meal-planner
benchmark, CFNullness issues 12 errors on the post-check version compared to 31 in the pre-
check version, a 61% reduction. Similarly, NullAway issues 85% fewer errors on the post-check
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Table 2. Differences in post-check benchmarks. Added Annotations are: @SuppressWarnings (SW), @Nullable
(Nul), and @NonNull (Non). Code Changes are: C1 (null check), C2 (requireNonNull()), C3 (initialize field),
C4 (final), C5 (signature change), C6 (add this), C7 (new method/constructor), C8 (argument changed),
C9 (return value changed), C10 (field type changed), and Ot (Others).

Benchmark Added Annotations Code Changes
SW Nul Non C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 Ot Sum

Butterknife 0 16 0 1 5 0 0 0 0 0 0 0 0 6 12
Cache2k-CFNullness 3 20 9 5 1 0 0 8 0 5 0 2 3 23 47
Cache2k-NullAway 3 105 8 4 0 0 0 1 0 9 2 1 0 11 28
FloatingAction... 0 23 0 7 0 0 0 0 0 0 0 0 0 0 7
Jib 0 52 0 19 0 0 0 0 0 0 0 0 0 2 21
Meal-planner 0 1 0 0 0 18 9 0 17 0 0 2 3 5 54
Nameless 0 1 11 0 0 0 17 0 0 0 0 0 0 3 20
Picasso 2 51 34 39 0 2 2 5 0 1 5 0 0 10 64
Table-wrapper-api 17 13 0 3 6 0 0 0 0 0 0 0 0 1 10
Table-wrapper-csv-impl 1 17 0 3 1 3 3 3 0 5 0 1 0 4 23
Total 26 299 62 81 13 23 31 17 17 20 7 6 6 65 286

version of this benchmark. These significant reductions show that the non-annotation code changes
contributed to resolving errors, even before applying inference tools.

Table-wrapper-csv-impl is an outlier, with more errors in the post-check version. This increase
is caused by new code in the post-check version that seems not to have been null-checked, since it
causes several new errors. We speculate it was being edited independently of the annotation process.

3.2.3 RQ3. To investigate whether these code changes contribute to more effective inference, we
analyzed whether applying inference on the pre- or post-check versions led to fewer errors. Table 3
shows that for most benchmarks, across all combinations of inference tools—WPI, NullGTN (NGT),
and Annotator (ANN)—and checkers, inference reduces errors more on the post-check code. For
example, when running CFNullness with WPI’s inferred annotations (WPI + CF) on the pre-check
and post-check versions of Table-wrapper-api, the number of errors decreased from 12 to 5 (a 58%
reduction). Similarly, running NullAway on the inferred version produced by Nullaway Annotator
(ANN + NW) on this benchmark resulted in a 100% error reduction (from 12 to 0).

These results suggest that type reconstruction experiments overestimate the effectiveness of
inference tools: the type reconstruction task for the “post” version is easier than the task of
annotating the same codebase before it has ever been annotated by a human (the “pre” version).

3.2.4 Example. To illustrate how code changes beyond adding annotations can help both checkers
and inference tools, consider this change in the Dispatcher.java file from Picasso:

+ if (connManager != null) {

networkInfo = connManager.getActiveNetworkInfo();

+ }

CFNullness raises an error here on the pre-check version before the above change, without using
any inference tool. However, in the post-check version, the addition of the null check ensures
that connManager is non-null within the if body, allowing CFNullness to verify that it is safe to
dereference it—preventing the error. Moreover, because CFNullness now knows that connManager
is non-null, an inference tool likeWPI that uses CFNullness as a subroutine will no longer propagate
nullability because of how connManager is used—improving the inference result, too.

3.3 Discussion
We have shown that type reconstruction experiments on previously-checked benchmarks introduce
a systematic bias: they overestimate the effectiveness of the studied nullability inference tools.
Developers change their code as they annotate in a way that makes both typechecking and type
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Table 3. Error counts after inference for the pre- and post-check versions of the benchmarks, using WPI,
NullGTN (NGT), and Annotator (ANN) inference tools with both CFNullness and NullAway. The average
counts are rounded to the nearest whole number.

WPI + CF WPI + NW ANN + CF ANN + NW NGT + CF NGT + NW
Benchmark Pre Post Pre Post Pre Post Pre Post Pre Post Pre Post
Butterknife 31 30 57 52 27 25 39 34 41 41 71 67
Cache2k-CFNullness 21 20 7 11 29 5 1 1 51 72 117 121
Cache2k-NullAway 23 21 7 7 31 26 2 1 109 107 118 117
FloatingAction... 48 48 28 28 34 35 3 0 53 53 30 28
Jib 462 440 103 88 264 253 12 2 301 179 87 69
Meal-planner 20 7 20 2 22 10 4 1 299 278 24 6
Nameless 3 3 4 4 26 26 0 0 35 15 21 21
Picasso 623 612 128 122 215 193 14 2 26 26 108 98
Table-wrapper-api 12 5 12 0 10 24 3 1 374 345 30 27
Table-wrapper-csv-impl 8 6 6 3 16 34 2 0 47 41 3 4
AVERAGE 125 119 37 32 67 63 9 4 134 126 61 56

inference easier, so these experiments do not evaluate the tools on their ability to handle the
complexities of unchanged, unchecked code that a programmer has not modified. We suggest using
never-checked benchmarks instead of previously-checked ones for more accurate evaluations.

3.3.1 Other Type Inference Contexts. Our results raise the question of whether bias in type re-
construction experiments is nullability-specific, or whether it might apply to type reconstruction
experiments in other contexts. Type reconstruction experiments are the standard way to evaluate
type inference for modern optional type systems, such as MyPy or TypeScript; e.g., the standard
benchmark for machine-learning based Python type inference tools [Li et al. 2023; Mir et al. 2022;
Peng et al. 2022, 2023] is ManyTypes4Py [Mir et al. 2021], a type reconstruction benchmark.
There are important differences between inferring nullability annotations and inferring types

for dynamically-typed languages like Python. Python type inference focuses on the “rare type”
problem (i.e., there is a long tail of user-defined types, and the hardest part of inference is handling
that long tail); by contrast, nullability annotation inference is more of a classification problem.
There are also significant differences between the relevant checkers, which might influence the
behavior of developers: nullability checkers are typically relatively opinionated compared to gradual
typecheckers about what code patterns they will verify, and nullness checkers also typically have
higher false positive rates. Both of these tendencies may encourage developers to make more
changes to their programs to help a nullability checking tool, making inference easier. Nonetheless,
our investigation raises an important question with respect to the validity of the experimental
designs used by recent work in gradual type inference, and future work should investigate whether
those tools perform as well on fully-unannotated benchmarks as in type reconstruction experiments.

3.4 Threats to Validity
There are threats to this study’s external validity: we only studied nine projects, since few human-
annotated benchmarks exist, and the projects that we did study may not be representative. The
effects we observed were consistent across the different projects, checkers, and inference tools,
which gives us confidence against these threats. Some of our analysis was conducted by hand, and
we could have made mistakes. We mitigate this threat by releasing records of our decisions and
judgments, our code, and our data. Several projects had been checked by some nullability detection
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tool before the “pre-check” version. This confound means that our experiments may underestimate
the extent of changes induced by adopting a checking tool.

4 Judging AnnotationQuality Without Ground Truth
Section 3 showed that type reconstruction experiments overestimate a nullability inference tool’s
effectiveness compared to how it will be deployed. This section explores how to judge the quality
of inferred annotations without ground truth. We first describe an ideal experiment (section 4.1)
that avoids the bias from section 3; however, it is clearly infeasible for cost reasons. Instead, we
turn to a theoretical analysis of the properties of the “best” annotations that an “ideal” inference
tool would infer (section 4.2), as well as a discussion of alternative definitions of “best” and why
we discarded them (section 4.3). The theoretical analysis in this section provides the basis for the
metrics used in our evaluation of inference tools on unannotated benchmarks (section 5.2).

4.1 Ideal Annotation Reconstruction Experiment
Ideally, to evaluate a nullability inference tool, wewould first select a large, diverse set of benchmarks
that have never been annotated or checked for nullability. We would then hire developers to
annotate these benchmarks for nullability. These developers would not be allowed to modify the
code, except to suppress warnings in cases that cannot be resolved by annotations alone, similar to
the intended functionality of the inference tools under investigation. This would provide an accurate
and comprehensive set of ground-truth annotations to compare against the output of the inference
tools, and would exclude code changes like those that biased prior type reconstruction experiments.
However, this experiment would be prohibitively expensive, as annotating a non-trivial codebase
can take days or weeks. Asking humans to do so under the artificial restriction of not changing
code for an experiment is impractical.

4.2 Defining the “Best” Annotations
For a program 𝑃 that has never previously been annotated for nullness, how can we measure
the quality of an inference tool’s output? Given a definition of the “best” annotations for 𝑃 , one
approach would be to measure the difference between the tool’s inferred annotations and the “best”
annotations. A drawback of this approach is that it may not accurately capture how a developer
would annotate 𝑃 ; as shown in section 3.2.1, when manually annotating a program, developers
almost always modify the code in the process, e.g., to fix bugs. Since none of the inference tools
we consider perform such code changes, we put this issue aside in this work, and proceed with
studying how to best annotate a subject program without any code changes. Incorporating the
impacts of code changes is an important topic for future work; a future inference tool that both
infers annotations and proposes typical code changes could possibly outperform extant tools.
Defining the “best” annotations for a program based on whether variables may or may not be

null is intuitive, but flawed. We are primarily concerned with annotations on the types of fields,
formal parameters, and method returns, since both nullability-checking tools that we study do
type inference for local variables. Intuitively, one might think that a @Nullable annotation should
appear on any such type if the corresponding variable (or returned value) might be assigned null

at run time. Unfortunately, this definition does not work for Java fields, all of which are initially
set to null according to the language semantics [Gosling et al. 2021]. The simple definition would
require making all fields @Nullable, an unsatisfactory solution.
Instead, we informally define the “best” nullness annotations for 𝑃 as follows (a corresponding

formal definition appears later in this section). We assume that 𝑃 is a “closed” program, i.e., there
is no unknown code that may invoke methods in 𝑃 ; we defer discussion of libraries, where this
does not hold, to later in the section. Then, the type of a field or formal parameter in 𝑃 should be
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@Nullable if there exists some read of the field or formal that may observe the value null. Similarly,
a return type should be @Nullable if there exists some read of the return value at a call site that
can observe null. If such a location is read at least once, and it is always initialized to a non-null
value before it is read, it should not be marked as @Nullable.

Note that the definition accommodates any protocol for field initialization that ensures fields will
always be initialized before use; any such field need not be marked as @Nullable. Field initialization
schemes in real-world code may be complex [Summers andMüller 2011], and we require a definition
that allows for this complexity. Our definition accommodates both the lazy initialization of fig. 1
from section 2 and the lifecycle-based initialization of fig. 2.

A drawback of this definition is its reliance on possible run-time behaviors of a program. Since it
only constrains annotations on locations that are read at least once, it has nothing to say about
how annotations should be placed in dead code. For our purposes, dead code includes code that
never executes, and also formal parameters, function return values (for all call sites), and fields that
are never used. Programs may contain dead code for any number of valid reasons (e.g., code for a
new feature that is partially implemented and not yet enabled). Checking tools are typically run on
all source code in a program, so in adopting such a tool, dead code would also need to be annotated.
Nevertheless, we adopt a definition tied to run-time behaviors to avoid tying it to specific static
reasoning techniques for nullness, which could make the definition too tied to a particular static
checker. Also, leveraging run-time semantics is appropriate in this case since nullness checking is
not built into the Java language semantics; a Java program may still be executed even if it has type
errors from a nullness checker, so its run-time behavior is still well-defined.

Automatically computing the best annotations for a program according to the above definition
is undecidable (since even determining if code may execute is undecidable [Rice 1953]). In our
evaluation, the definition serves as a guide when manually evaluating the @Nullable annotations
inserted by different inference engines (section 5.2.1). Regarding dead code, in ourmanual evaluation
we did not attempt to determine if code was truly reachable from an entrypoint. Instead, we did a
local inspection to discover calls to methods to learn how they are expected to behave.

Formalization. To make our definition of the "best" annotations more rigorous, we formalize the
concept in terms of program execution and memory interactions. We base this formalization on the
Java memory model as described in The JavaTM Language Specification (JLS) Section 17.4 [Oracle
2015], which defines the possible behaviors of a program.

The following definitions establish a framework for reasoning about nullness based on program
traces, read actions, and dereference chains. This framework allows us to rigorously state conditions
under which an element should be annotated as @Nullable and provides a formal basis for ensuring
null safety.

Definition 4.1. [Action] An action 𝑎 is described by a tuple ⟨𝑘, 𝑣,𝑢⟩, where 𝑘 is the kind of action
(e.g., read, write, lock, unlock, etc.), 𝑣 is the variable or monitor involved in the action, and 𝑢 is the
value associated with the action.1

Definition 4.2. [Program Trace] A program trace, denoted as 𝑇 , is a global sequence of actions
⟨𝑎1, 𝑎2, . . . , 𝑎𝑛⟩ that represents the execution of a program during a single run.

Definition 4.3. [Read Action] A read action occurs when a variable 𝑣 is accessed, and a value 𝑢
is transmitted from the main memory to the working memory of the thread executing the program.

1Note: This definition adapts the action formalism from JLS 17.4.2 [Oracle 2015] and omits the thread 𝑡 component, as
threads are not directly relevant to this work.
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Definition 4.4. [Best Annotation Rule] The type of the program element 𝑣 at its declaration
should be annotated as @Nullable if:

∃𝑎 ∈ 𝑇, Kind(𝑎) = Read ∧ Variable(𝑎) = 𝑣 ∧ Value(𝑎) = null,

where Kind(𝑎) denotes the kind of action 𝑎 (e.g., read, write, lock, etc.), Variable(𝑎) represents the
program element 𝑣 involved in action 𝑎, and Value(𝑎) is the value associated with the action 𝑎.

Definition 4.5. [Dereference Chain] The dereference chain dereferences() is a partial order
over actions in the program trace 𝑇 [Oracle 2015]. Formally, for actions 𝑟 and 𝑎, dereferences(𝑟, 𝑎)
holds if and only if 𝑟 is a read action that observes the reference of an object 𝑜 , and 𝑎 is a subsequent
action that accesses 𝑜 , such as reading or writing a field (e.g., 𝑜.𝑓 𝑖𝑒𝑙𝑑), invoking a method (e.g.,
𝑜.𝑚𝑒𝑡ℎ𝑜𝑑 ()), or accessing an array element (e.g., 𝑜 [𝑖𝑛𝑑𝑒𝑥]). This partial order reflects the causal
relationship between 𝑟 and 𝑎, where 𝑟 provides the reference required by 𝑎.

Definition 4.6. [Dereference(x)] For a program element 𝑥 , a dereference(x) is the set of all
actions 𝑎 in the program trace 𝑇 that access 𝑥 . Formally:

Dereference(𝑥) = {𝑎 ∈ 𝑇 | ∃𝑟 ∈ 𝑇, dereferences(𝑟, 𝑎) ∧ 𝑣 (𝑎) = 𝑥},

Definition 4.7. [Null Safety] A program 𝑃 is null-safe if for every program element 𝑥 and for
every action 𝑎 ∈ Dereference(𝑥), all read actions 𝑟 in the dereference chain for 𝑎 provide a non-null
reference. Formally:

∀𝑥 ∈ 𝐸𝑃 , ∀𝑎 ∈ Dereference(𝑥), ∀𝑟 ∈ 𝑇, dereferences(𝑟, 𝑎) =⇒ Value(𝑟 ) ≠ null,

In which 𝐸𝑃 is the set of all program elements in the program 𝑃 , including variables, fields, formal
parameters, and method return values.

Proof Sketch for Null Safety. We aim to show that if a program is annotated according to the Best
Annotation Rule (Definition 4.4) and a sound nullability type checker reports no errors, then the
program satisfies the definition of null safety (Definition 4.7).
Assuming the program is analyzed by a sound2 nullability type checker, the proof proceeds by

case analysis on the dereference chain for a program element 𝑥 :
• Case 1: At least one read action 𝑟 in the dereference chain retrieves a null reference. Since
∃𝑟 ∈ 𝑇 where Value(𝑟 ) = null, the Best Annotation Rule (Definition 4.4) requires that 𝑥 be
annotated as @Nullable. A sound nullability checker prevents dereferencing such elements
without a null check; if unguarded, it reports an error, ensuring the program does not execute
with unsafe dereferences.

• Case 2: All read actions 𝑟 in the dereference chain retrieve non-null references. If ∀𝑟 ∈
𝑇, dereferences(𝑟, 𝑎) =⇒ Value(𝑟 ) ≠ null, then 𝑥 is not annotated as @Nullable. By Defini-
tion 4.7, null safety holds since no dereference chain retrieves a null value.

Libraries. The above definition assumes that a program 𝑃 is “closed” and contains all relevant
code that may invoke any method defined in 𝑃 . However, this assumption does not cover libraries,
which are “open” programs with public methods that may be invoked by unknown client code. In
fact, libraries themselves may not contain any invocations of some of their public API methods
(excluding test code). A question remains of how to best annotate such API methods. For these
methods, we follow the alternative principle of “accurate API documentation” (section 4.3.3) by
requiring that a parameter of a public API should not be @Nullable unless passing null can lead
2A “sound” nullability checker is one that rejects all programs with unsafe dereferences. In practice, extant nullability
checking tools are at best “sound-y” [Livshits et al. 2015]: that is, they are sound with some caveats (e.g., sound except in
the presence of integer overflow, reflection, etc.). This proof illustrates that our definition is theoretically sensible.
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to an NPE within the library. Beyond that, in the evaluation we make a best effort to determine
whether such a parameter should be @Nullable using both code and any available documentation.

4.3 Discussion: Alternative Principles for “Best” Annotations
This section discusses alternative principles for the “best” annotations that we considered when
devising the definition of section 4.2. These principles are all “good” in a platonic, abstract way:
ideally, a nullness annotation inference tool could achieve all of them at once. In practice, however,
there are trade-offs between them. We discuss each principle in turn and discuss the scenarios for
which each principle is important, their trade-offs, and why we prefer the definition in section 4.2.

4.3.1 Accuracy with Respect to Run-Time Semantics. It is desirable for the set of annotations to be
correct in the sense of soundness (every program element that may be null is marked @Nullable)
and precision (only program elements that may be null are marked @Nullable). However, soundly
and precisely determining whether elements may be null at run time is undecidable [Rice 1953],
and hence fully sound, precise, and terminating inference cannot be achieved. Further, as noted in
section 4.2, full accuracy does not yield useful results for Java fields, which are all initially assigned
null.

4.3.2 Error Reporting Locations. It is desirable for the set of annotations produced by an inference
tool to lead a nullness checker to produce warnings that are “close” to the root causes of those
warnings. For a true null pointer bug in the program, ideally the warning would appear near where
the developer would prefer to fix the bug. And, for code that is correct but beyond the verification
capabilities of the checker, ideally the warning would appear near the unverifiable code pattern.
The fundamental downside of defining “best” annotations based on the location of warning reports
is that it relies on knowing how developers would choose to address warnings. In practice, it is
not feasible to collect this information from developers at scale, and preferences may vary across
developers or teams. Further, this principle does not help us judge the quality of annotations that
are not involved in producing a checker warning.

4.3.3 Accurate API Documentation. It is desirable for the “best” annotations to accurately represent
the entry- and exit-points of the program with respect to their nullability, while leaving future
maintainers implementation freedom where possible. Consider the case of a library that is intended
to be used by unknown client code. For this case, it may be desirable to infer more @Nullable

annotations that what are strictly required to allow a checker to verify the library. E.g., for the fig. 3
example from section 2, the inferred @Nullable annotations on the sumLengths parameters are
not required to verify its safety, but they accurately capture its ability to accept null arguments.

One could define the “best” annotations for libraries based on all possible invocations of a public
API method: require @Nullable on any parameter where passing in null cannot cause an NPE
inside the library. But, this definition ignores developer intent, which may be evident in non-code
artifacts like API documentation. We want a methodology that accommodates tools that can reason
about such non-code artifacts, like ML-based approaches. So, we only require that a parameter
should not be @Nullable if passing in null can lead to an NPE within the library. This principle
is useful for evaluating annotations on public APIs, but it does not give any guidance for closed
programs, which is why we do not make it the core principle of our best annotations definition.

5 Comparative Evaluation Without Type Reconstruction
Our goal is to conduct a comprehensive evaluation of the three extant nullability inference tools
that avoids the bias of type reconstruction experiments identified in section 3. To that end, we
formulate these research questions (RQs):
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RQ4 What is a standardized evaluation methodology to fairly evaluate the effectiveness of nullability
inference tools that avoids the bias inherent in a type reconstruction experiment?

RQ5 What are the comparative results of the different nullability inference tools when evaluated
using the proposed standardized evaluation methodology?

5.1 Benchmarks
We chose the Normalized Java Resource (NJR-1) dataset [Utture et al. 2020], which consists of 293
real-world Java programs collected from GitHub. This dataset was selected because its creators
had already performed the challenging task of normalizing the programs, making it easier to run
various checking and inference tools. Additionally, it has been used in multiple studies [Kalhauge
and Palsberg 2019; Le-Cong et al. 2022; Mir et al. 2024; Utture et al. 2022; Utture and Palsberg 2023].
After excluding benchmarks incompatible with Java 11, our final selection included 255 programs,
totaling 1.44 million lines of code (LoC). Its programs have an average of 5.6K lines, a maximum of
52K lines, and a minimum of 440 lines, excluding comments and blank lines.

5.2 Proxies for the Idealized Inference Tool
Defining the "best" nullability annotations for a given program is more complex than it initially
appears (see section 4 for discussion). While aligning annotations with run-time behavior is a good
starting point, it does not fully account for the intricacies introduced by initialization patterns and
the specific behaviors of different null-checking tools. So, we answer RQ4 by proposing a set of
proxies—manual analysis of annotation quality, remaining error counts after inference, and using
dynamically-measured nullability as ground truth—that approximate an idealized inference tool:
that is, each proxy cannot solely determine the "best" annotations, but together they provide a
holistic view of the quality of the annotations produced by the nullability inference tools.

5.2.1 Annotation Quality. For our manual assessment, we sampled 150 annotations that were
added by only one of the tools and 150 annotations that were missed by only one tool: that is, we
sampled places where one tool disagrees with the others. This approach focused on understanding
the differences between the three tools, informing potential improvements and further research. We
did not analyze cases where all tools produced the same annotations, as such cases do not illuminate
the differences we aimed to explore. Two authors evaluated the quality of these annotations and
recorded their assessments. Initially, they disagreed on 10 cases, but after discussion and review, all
disagreements were resolved, leading to a consensus on every case. The Cohen’s Kappa [Cohen
1960] value for their initial independent evaluations was 0.93, indicating near-perfect agreement.
This study highlights the mistakes and good decisions made uniquely by each inference tool. We
manually judged each case guided by our definition of “best” annotations in section 4.2, focusing on
whether the annotation reflects the program’s intent and whether we would keep the annotation
in the code.
Figure 4 shows our results as a Venn diagram. There were 71 cases where only Annotator was

correct, 27 cases for WPI, and 22 cases for NullGTN. There were 29 cases where only Annotator
was wrong, 73 cases for WPI, and 78 cases for NullGTN. A split (+𝑥/−𝑦) is shown for each number,
where 𝑥 corresponds to inferring @Nullable and 𝑦 to not inferring @Nullable. We discuss results
for each tool in turn.
Annotator. For the 43 cases where only Annotator correctly inferred @Nullable, in 18 cases the
disagreement stemmed (sometimes indirectly) from WPI not marking a field as @Nullable, due to
a bug in WPI’s handling of uninitialized fields in constructors (we reported all discovered bugs to
the maintainers). 9 cases were due to WPI’s lack of support for generic types. In the remaining 16
cases, there was no clear pattern. The 28 cases where only Annotator correctly avoids inferring
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@Nullable all corresponded to field initialization. 8 cases were due to better analysis of initialization
logic in NullAway, and 20 cases were due to Annotator’s avoidance of @Nullable annotations that
increase the final error count (section 2.2). Figure 2 is an example of the latter: Annotator’s error
reduction heuristic correctly led it to not annotate the name field as @Nullable.

For the 7 cases where only Annotator wrongly inferred @Nullable, the main cause was impreci-
sion in NullAway’s dataflow analysis. The 22 cases where only Annotator wrongly missed inferring
@Nullable were due to its error reduction heuristic, which in these cases led it to miss a good
@Nullable annotation.
WPI. For the 18 cases where only WPI correctly inferred @Nullable, 15 were again due to An-
notator’s error reduction heuristic causing it to miss a good annotation. The remaining 3 cases
were due to CFNullness having better models of Java library methods like Method.invoke and Map

methods. For the 9 cases where only WPI correctly avoided inferring @Nullable, there was no
clear pattern. The 32 cases where only WPI wrongly inferred @Nullable were all variants of field
initialization issues. 16 cases involved initializer methods invoked elsewhere, like onStart in fig. 2.
In 9 cases fields were initialized in methods called by the constructor, which is handled by NullAway

Annotator

(+43/-28)
71

(+41/-32)
73

(+37/-41)
78

(+22/-7)
29

NullGTN

(+9/-13)
22

WPI

(+18/-9)
27

Fig. 4. Venn diagram illustrating number of cases
where each tool handled a disagreement correctly.

but not CFNullness. There were 3 cases
of protected fields initialized in subclasses,
and 4 cases of static fields initialized in
main. Finally, for the 41 cases where only
WPI wrongly missed inferring @Nullable,
13 cases were due to the bug in WPI’s field
initialization handling mentioned earlier, 18
cases were due to lack of support for gener-
ics, and there was no clear pattern in the
remaining 10 cases.
NullGTN. There were 9 cases where only
NullGTN correctly inferred @Nullable, and
they were all on unused method parameters.
We treated these annotations as correct since
they safely provide additional flexibility to
callers to pass in null. Surprisingly, in this
study we found no cases like that of fig. 3
where only NullGTN correctly made a used
parameter of a public API @Nullable. In an
additional manual inspection of 50 uncalled
public API methods, we only found one case
like fig. 3 where NullGTN added the desired annotation, but found many cases where it added
erroneous annotations on primitive types (more discussion below). For the 13 cases where only
NullGTN correctly refrained from inferring @Nullable, 4 were cases of complex field initialization.
In the other 9 cases, Annotator and WPI incorrectly made a parameter @Nullable due to imprecise
analysis of callers, which in fact can never pass null.
For the 41 cases where only NullGTN wrongly inferred @Nullable, 21 were due to NullGTN

incorrectly marking primitive types as @Nullable, which the maintainers have acknowledged is
a bug. Nonsensical inferences like these may stem from NullGTN’s use of ML for type inference;
deductive approaches easily avoid these mistakes. The remaining cases had no clear pattern and
were difficult to understand. For example, there were five cases where the event object parameter
passed to a GUI event callback were marked as @Nullable, which makes little sense. There was
no clear evidence of why NullGTN incorrectly inferred @Nullable for these cases—a result of
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the inscrutability of deep learning techniques. For the 37 cases where NullGTN wrongly missed
inferring @Nullable, there was clear evidence of nullability, such as null literal assignments, null
checks, and null returns from methods; the inscrutability of deep learning means we cannot explain
why NullGTN did not infer @Nullable for these cases.

5.2.2 Remaining Error Count. From an automation perspective, the "best" annotations could be
those that require the fewest code changes and the least effort from the programmer to satisfy
a nullness checker. In this sense, how many errors remain after applying the tool’s inferred
annotations is a proxy for the quality of those annotations, particularly in how well they align with
the program’s run-time behavior.
Clearly having no errors remain is desirable, since then the program has been verified. When

some errors do remain (nearly all cases in practice), absolutely minimizing the number of errors (as
done by Annotator) is not always beneficial, as discussed in section 2.2. Section 5.2.1 showed that
more often than not, Annotator’s error minimization heuristic did lead to better overall annotations
compared to WPI. Here, we measure remaining error count as another complementary proxy for
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Fig. 5. Box plots depicting the distribution of percent-
age error reduction reported by two nullness check-
ers across all three inference tools. ANN:Annotator,
NGT:NullGTN, WPI:WPI. NW: NullAway, CF: CFNull-
ness.

annotation quality, given the intuitive ben-
efits of a smaller number of errors and the
evidence from section 5.2.1 that with fewer
errors the annotations may be of higher qual-
ity.

For this experiment, after applying the an-
notations inferred by each tool, we ran both
NullAway and CFNullness on the annotated
code to collect remaining errors. The distri-
bution of percentage error reduction for each
combination of inference and checking tool
appears in the box plots of fig. 5, where 100%
indicates complete error removal and nega-
tive values signify an increase in errors.
Annotator. Annotator decreased the number
of errors reported by NullAway by an aver-
age of 50% (-12.5% to 100%). Annotator was
less effective in reducing errors reported by
CFNullness, with an average reduction of
25% (-766% to 100%). This difference is ex-

pected, as Annotator is designed to minimize NullAway errors, and also CFNullness does stricter
checking than NullAway.
WPI. On average, WPI increases the final error count from the checkers, with a -21% reduction with
NullAway and a -68% reduction with CFNullness. It reduces the final error count in 134 cases with
NullAway and 62 cases with CFNullness. WPI is not designed to minimize errors, which explains
the low error reduction rates. Instead, WPI is intended to align with CFNullness—a conservative
checker that errs on the side of warning about possible null dereferences, leading to more errors.
NullGTN. NullGTN increased the final error count in most cases: it only achieved an error reduction
in 24 cases for NullAway and 11 for CFNullness. Its average reductions were -118% for NullAway
and -93% for CFNullness. NullGTN is not designed to minimize errors from any tool and is trained
on code that was not run through checking tools (section 2.3), which could explain the very low
error reduction rates.
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5.2.3 Dynamic Nullability. Another proxy for the ground-truth is dynamic nullability—whether a
program element is null or non-null at run time. This proxy is necessarily limited: like any dynamic
analysis, it depends on the quality of the inputs to the analyzed programs. This approach also does
not directly evaluate the quality of the inferred annotations; our section 4.2 definition does not
require that all locations that may be null at run time be marked @Nullable to account for field
initialization. Nevertheless, dynamic nullability offers another useful view of the outputs of the
inference tools.

Each benchmark in NJR contains a single main class, and NJR guarantees that running the main
class will invoke at least 100 methods within the program. Of our 255 programs from NJR, we
successfully collected data for 110 programs where the execution was successful and the Daikon
invariant detection tool [Ernst et al. 2007] was able to generate dynamic traces. The remaining
programs failed due to issues such as missing dependencies, missing resources, or problems with
network or database access. Out of the 110 programs, only 33 programs had at least one null
element identified by dynamic analysis; we focus our analysis on these programs. We collected
dynamic traces for these programs using Daikon. We parsed Daikon’s output and recorded which
parameters, return values, and fields contain null at any point during program execution. We
compared the result to the annotations inferred by our three inference tools.

We define the Missed Annotation Rate (MAR) as our primary metric:

MAR(%) =
(
Non-annotated nullable elements

All nullable elements

)
× 100

This metric measures the proportion of nullable elements identified by dynamic analysis that the
inference tool failed to annotate. Lower MAR is usually better.
Out of 312 program elements in the 33 subject programs that we observed to be dynamically

nullable, WPI marked 309 as @Nullable (MAR of 0.97%), Annotator marked 295 as @Nullable
(MAR of 5.45%), and NullGTN marked 231 as @Nullable (MAR of 25.96%). WPI’s low MAR is
expected because it is based on the conservative CFNullness checker, which has a strong soundness
guarantee. All three elements that WPI missed were due its lack of handling for generic types,
which the WPI authors admit as a weakness (Section VI.E.1.b of [Kellogg et al. 2023]). Annotator
can miss a @Nullable annotation for two reasons: either NullAway unsoundly does not detect
the nullable flow into the location, or adding the @Nullable annotation increases the number
of errors from NullAway. Out the 17 misses, 11 of them were due to the first reason, namely a
call to a third-party routine that NullAway assumes does not return null. 6 of them were due to
the second reason of leading to an increased NullAway error count. All these cases should have
been marked @Nullable according to our section 4.2 definition. NullGTN annotates many fewer
dynamically-nullable locations than the deductive approaches, but because its deep-learning-based
model is not explainable, we cannot interrogate why.

Still, overall all three tools caught most of the null elements identified by dynamic analysis, with
WPI being the most successful. The experiment shows a significant difference between Annotator
and WPI: WPI tries its best to encode the program’s current semantics, while Annotator uses
NullAway as a crude fitness function for the intended semantics. A promising avenue for future
work is better fitness functions for the intended semantics that better capture programmer intent.

5.3 Summary and Discussion
Our overall answer to RQ5 is that while Nullaway Annotator stands out—it makes the fewest
mistakes according to our manual analysis, and is the most effective at error reduction—all three
tools have distinct strengths, and no one tool strictly dominates the others. Annotator’s relative
strength seems to stem from its design choice to optimize for minimizing errors, which automatically
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leads to leveraging contextual usage patterns in how program elements are used—for example,
Annotator can avoid falling into the trap of annotating a field as @Nullable due to a buggy nullable
dataflow in, if that field is dereferenced without null checks many times. WPI, in contrast, strictly
adheres to the analysis provided by CFNullness, ensuring consistency but often over-producing
@Nullable annotations due to the checker’s conservative approach, particularly when dealing with
complex object initialization protocols. WPI’s reliance on a sound checker makes it effective in
capturing run-time semantics, as shown by dynamic nullability, but less flexible in adapting to
programmer intent compared to Annotator. NullGTN uses artificial intelligence to infer annotations
based on patterns learned from open-source projects, making it capable of analyzing public APIs
even when they are not called in the code. However, this method can lead to over-generalizations,
such as marking primitive types as nullable, and struggles with poor code quality.

5.4 Threats to Validity
There are generalizability threats to our conclusions: we only evaluated 3 inference tools, only for
Java, and only for nullability. What makes a high-quality inference tool for other languages or other
analysis domains besides nullability may differ. While the NJR benchmarks are diverse, open-source
projects, they may not be representative of e.g., industry code (which may be higher quality, better
tested, etc.). Our analysis of annotation quality (section 5.2.1) was conducted by hand, and we
may have made errors; we mitigated this threat by both having a second author double-check
all judgments and by releasing our data and judgment records publicly. The definition of “best
annotations” that guided our manual analysis was also chosen based on a theoretical analysis,
and may not match what some developers would prefer. Our dynamic nullability experiment
(section 5.2.3) was conducted on only the small group of NJR benchmarks that 1) could execute,
and 2) had at least one null element detected by Daikon; both of these limit its generalizability.
Moreover, the test cases provided with NJR may not be high quality: “cover at least 100 methods” is
an arbitrary and not necessarily high bar. We mitigate these threats by not overly relying on the
dynamic nullability results: it is one among several proxies. Finally, our two proxies fundamentally
approximate the ground truth, and even together they might not capture some important aspect of
nullability inference. We mitigated this threat with our manual annotation quality experiment.

6 Related Work
Nullability Annotation Inference Tools. The papers that introduced the three nullability annotation
inference tools [Karimipour et al. 2023; Kellogg et al. 2023; Siddiqui and Kellogg 2024] are the most
closely-related works, because each evaluated its tool in isolation. WPI and NullGTNwere evaluated
with type reconstruction experiments, which we showed in section 3 are a flawed way to evaluate
these tools: they overestimate how well an inference tool would do in its intended deployment
context. Because type reconstruction experiments cannot be conducted unless a developer has
annotated the code, the subject programs in these experiments are artificially easy to annotate. The
Nullaway Annotator paper [Karimipour et al. 2023] did not do a type reconstruction experiment,
but instead evaluated the tool exclusively on its ability to reduce NullAway warnings. While this is
a useful proxy, our experiments in section 5 show that it does not tell the whole story. We discuss
prior experiments in more detail in section 2.4. Our work both corrects methodological flaws in
prior work and evaluates all three tools fairly, on the same set of benchmarks, for the first time.
The Daikon invariant detector [Ernst et al. 2007] includes a mode to insert @Nullable anno-

tations into the source code for any program element that it detects at run time contains a null
value [The Daikon developers 2024]. This mode is one of our proxies in our comparative evaluation
(section 5.2.3), because as a dynamic technique it is inherently limited by the quality of the available
inputs for the target program—unlike the static techniques that we did evaluate. In a realistic
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deployment scenario, we do not believe that it is reasonable to assume that the target program will
have a representative test suite available, so we do not consider dynamic inference tools. Another
dynamic inference technique was proposed by Dietrich et al. [2023] based on using test cases to
detect locations that might contain null at run time. It was evaluated with a type reconstruction
experiment, and so its evaluation suffers from the same problems that we noted in the static tools’
evaluations in section 3.

Comparative Evaluations of ML-based Type Inference Tools. The NullGTN paper [Siddiqui and
Kellogg 2024] cites recent advances in machine-learning-based type inference for dynamically-
typed languages like Python as an influence on their experimental design. These works use type
reconstruction experiments. For example, the ManyType4Py benchmark [Mir et al. 2021] is the
standard benchmark for Python, used in most recent works [Li et al. 2023; Mir et al. 2022; Peng
et al. 2022, 2023]; this benchmark’s task is type reconstruction. We discuss whether the issues we
discovered with these experiments apply to this line of work in section 3.3.1.

Comparative Evaluations of Deductive Type Inference Tools. Classical type inference [Pierce 2002,
Chapter 22] focuses on finding a complete typing for a program in a language’s type system.
Languages with global type inference often admit inference algorithms that are guaranteed to
compute the principal (best) types, if they exist; in such cases, there is no need to compare the output
quality of different inference algorithms. We focus on cases where we want a partial inference
solution for a program that may not pass a checker (e.g., due to program bugs), so classical inference
techniques do not directly apply. Some techniques to compute better explanations of type inference
errors use a constraint-based approach [Loncaric et al. 2016; Pavlinovic et al. 2014; Zhang et al.
2017], aiming to satisfy as many of the constraints as possible. In principle, this “best” partial
solution could be translated to annotations, but it would be deeply tied to a particular constraint
generation scheme. Our definition of best annotations (section 4.2) is independent of any particular
static checking technique, so it is a better basis for comparing tools.

7 Conclusion
Type reconstruction experiments systematically overestimate the effectiveness of nullability anno-
tation inference tools, because developers make semantic changes that make both checking and
inference simpler when annotating their code. We therefore conducted experiments using a new
methodology, based on a novel theoretical definition of which nullability annotations are “best,” to
fairly compare three extant nullability annotation inference tools. Our results suggest that while
Nullaway Annotator is the best tool overall, all three have distinct strengths and weaknesses, and
all three can improve a lot. Our work points towards how to improve these tools along several
dimensions: make inference tools suggest code changes, not just annotations; define a fitness
function that captures developer intent better than “minimize checker errors”; and more.

Data Availability
Our scripts, data, and records of human judgments are available online [Karimipour et al. 2024].
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