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What’s a Resource Leak?

try {

   Socket s = new Socket(address, port);

   ...

   s.close();

} catch (IOException e) {

}
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Missing call to close()



Problems Caused by Resource Leaks
● Resource starvation

● Slowdowns

● System crashes

● Denial-of-service attack 
○ E.g. CVE-1999-1127, CVE-2001-0830, CVE-2002-1372
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Key Challenge: Pointer Aliasing
● Resource can be closed through any alias
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Key Challenge: Pointer Aliasing
● Resource can be closed through any alias

● Previous approaches:
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Heuristic 
bug-finding tools

Ownership 
type systems

Whole-program 
static analysis

Track all 
aliases

Ignore aliasing Enforce 
uniqueness



Key Insight
● Resource leak detection is an accumulation problem
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Key Insight
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○ FSM contains no loops
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Key Insight
● Resource leak detection is an accumulation problem

○ FSM contains no loops
○ Sound with no alias analysis
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Resource Leaks as Accumulation

Open closed
close()
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close()
FSM contains no loops

Alias analysis not 
required for soundness



Resource Leaks as Accumulation

Open closed

Error Exit

close()

Going out
 of scope

Going out
 of scope

FSM must transition 
only in one direction

can be implemented 
modularly
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FSM contains no loops

Alias analysis not 
required for soundness

close()



Leak Detection Approach:
1. Compute what methods must be called

2. Compute what methods are called

3. Issue error if mismatch when going out of scope
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Example
{

  s = new Socket(address, port);

  ...

  if (...) {

    s = ...;

  } 

  s.close();

}
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Obligation: call close on s
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Example
{

  s = new Socket(address, port);

  ...

  if (...) {

    s = ...;
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Error

Obligation: call close on s

Called Methods: {}

Called Methods: {“close”}



Example
{

  s = new Socket(address, port);

  ...

  if (...) {

    s = ...;

  } 

  t = s;

  t.close();

}
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Obligation: call close on s

Called Methods: {}

Called Methods: {}

Error



Example
{

  s = new Socket(address, port);

  ...

  if (...) {

    s = ...;

  } 

  t = s;

  t.close();

}
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Obligation: call close on s

Error
Called Methods: {}

Called Methods: {}

Sound but not precise



● Local must-aliases

● Lightweight ownership

● Resource aliasing

● Obligation creation
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● Local must-aliases

● Lightweight ownership
● Resource aliasing

● Obligation creation
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Precision via Local Alias Reasoning



closeSocket(mySock);
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Lightweight Ownership



closeSocket(mySock);
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Lightweight Ownership

Obligation: call close on mySock
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Lightweight Ownership

Obligation: call close on mySock

Obligation: call close on mySock

void closeSocket(@Owning Socket s) {

  s.close();

}

Obligation: call close on s



closeSocket(mySock);
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Lightweight Ownership

void closeSocket(@Owning Socket s) {

  s.close();

}

● Obligations are neither created nor destroyed

● Doesn’t restrict privileges of other aliases

Obligation: call close on mySock

Obligation: call close on s



● Local must-aliases

● Lightweight ownership

● Resource aliasing
● Obligation creation

39

Precision via Local Alias Reasoning



Socket socket = ...;

InputStreamReader stream = 

    new InputStreamReader(socket.getInputStream());

...
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Socket socket = ...;

InputStreamReader stream = 

    new InputStreamReader(socket.getInputStream());

...
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Resource Aliasing

Which of these should be closed?

● Closing either  socket  or  stream  is adequate
● Extensibility
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Evaluation:



Four programs: zookeeper, hadoop-hdfs, hbase, plume-util
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Evaluation: Case Studies

Four programs: zookeeper, hadoop-hdfs, hbase, plume-util
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Lines of code
Resource 

Leaks Found
False positive 

warnings
Annotations

427,858 49 121 286

~1 per 1,500 LoC



Evaluation: Comparison
3 analyses:
● RLC, our type-based analysis

● Eclipse’s high-confidence heuristic bug-finder

● Grapple, a whole-program graph reachability analysis 
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Contributions
● Lightweight and modular resource leak verification via 

accumulation analysis
● Local alias reasoning for precision

● Extensive evaluation
● Open-source implementation at checkerframework.org

54


