
Lightweight and Modular
Resource Leak Verification

Martin Kellogga , Narges Shadabb , Manu Sridharanb,
Michael D. Ernsta

aUniversity of Washington bUniversity of California, Riverside

8

What’s a Resource Leak?

try {

 Socket s = new Socket(address, port);

 ...

 s.close();

} catch (IOException e) {

}

9

What’s a Resource Leak?

try {

 Socket s = new Socket(address, port);

 ...

} catch (IOException e) {

}

10

Missing call to close()

Problems Caused by Resource Leaks
● Resource starvation

● Slowdowns

● System crashes

● Denial-of-service attack
○ E.g. CVE-1999-1127, CVE-2001-0830, CVE-2002-1372

11

Key Challenge: Pointer Aliasing
● Resource can be closed through any alias

12

Key Challenge: Pointer Aliasing
● Resource can be closed through any alias

● Previous approaches:

13

Key Challenge: Pointer Aliasing
● Resource can be closed through any alias

● Previous approaches:

14

Heuristic
bug-finding tools

Ignore aliasing

Key Challenge: Pointer Aliasing
● Resource can be closed through any alias

● Previous approaches:

15

Heuristic
bug-finding tools

Ignore aliasing

Ownership
type systems

Enforce
uniqueness

Key Challenge: Pointer Aliasing
● Resource can be closed through any alias

● Previous approaches:

16

Heuristic
bug-finding tools

Ownership
type systems

Whole-program
static analysis

Track all
aliases

Ignore aliasing Enforce
uniqueness

Key Insight
● Resource leak detection is an accumulation problem

17

Key Insight
● Resource leak detection is an accumulation problem

○ FSM contains no loops

18

Key Insight
● Resource leak detection is an accumulation problem

○ FSM contains no loops
○ Sound with no alias analysis

19

Resource Leaks as Accumulation

Open closed
close()

20

close()

Resource Leaks as Accumulation

Open closed

Error Exit

close()

Going out
 of scope

Going out
 of scope

21

close()

Resource Leaks as Accumulation

Open closed

Error Exit

close()

Going out
 of scope

Going out
 of scope

22

FSM contains no loops
close()

Resource Leaks as Accumulation

Open closed

Error Exit

close()

Going out
 of scope

Going out
 of scope

23

close()
FSM contains no loops

Alias analysis not
required for soundness

Resource Leaks as Accumulation

Open closed

Error Exit

close()

Going out
 of scope

Going out
 of scope

FSM must transition
only in one direction

can be implemented
modularly

24

FSM contains no loops

Alias analysis not
required for soundness

close()

Leak Detection Approach:
1. Compute what methods must be called

2. Compute what methods are called

3. Issue error if mismatch when going out of scope

25

Example
{

 s = new Socket(address, port);

 ...

 if (...) {

 s = ...;

 }

 s.close();

}

26

Example
{

 s = new Socket(address, port);

 ...

 if (...) {

 s = ...;

 }

 s.close();

}

27

Obligation: call close on s

Example
{

 s = new Socket(address, port);

 ...

 if (...) {

 s = ...;

 }

 s.close();

}

28

Obligation: call close on s

Called Methods: {}

Called Methods: {“close”}

Example
{

 s = new Socket(address, port);

 ...

 if (...) {

 s = ...;

 }

 s.close();

}

29

Obligation: call close on s

Called Methods: {}

Called Methods: {“close”}

Error

Example
{

 s = new Socket(address, port);

 ...

 if (...) {

 s = ...;

 }

 s.close();

}

30

Error

Obligation: call close on s

Called Methods: {}

Called Methods: {“close”}

Example
{

 s = new Socket(address, port);

 ...

 if (...) {

 s = ...;

 }

 t = s;

 t.close();

}

31

Obligation: call close on s

Called Methods: {}

Called Methods: {}

Error

Example
{

 s = new Socket(address, port);

 ...

 if (...) {

 s = ...;

 }

 t = s;

 t.close();

}

32

Obligation: call close on s

Error
Called Methods: {}

Called Methods: {}

Sound but not precise

● Local must-aliases

● Lightweight ownership

● Resource aliasing

● Obligation creation

33

Precision via Local Alias Reasoning

● Local must-aliases

● Lightweight ownership
● Resource aliasing

● Obligation creation

34

Precision via Local Alias Reasoning

closeSocket(mySock);

35

Lightweight Ownership

closeSocket(mySock);

36

Lightweight Ownership

Obligation: call close on mySock

Obligation: call close on mySock

closeSocket(mySock);

37

Lightweight Ownership

Obligation: call close on mySock

Obligation: call close on mySock

void closeSocket(@Owning Socket s) {

 s.close();

}

Obligation: call close on s

closeSocket(mySock);

38

Lightweight Ownership

void closeSocket(@Owning Socket s) {

 s.close();

}

● Obligations are neither created nor destroyed

● Doesn’t restrict privileges of other aliases

Obligation: call close on mySock

Obligation: call close on s

● Local must-aliases

● Lightweight ownership

● Resource aliasing
● Obligation creation

39

Precision via Local Alias Reasoning

Socket socket = ...;

InputStreamReader stream =

 new InputStreamReader(socket.getInputStream());

...

40

Resource Aliasing

Socket socket = ...;

InputStreamReader stream =

 new InputStreamReader(socket.getInputStream());

...

41

Resource Aliasing

Which of these should be closed?

Socket socket = ...;

InputStreamReader stream =

 new InputStreamReader(socket.getInputStream());

...

42

Resource Aliasing

Which of these should be closed?

● Closing either socket or stream is adequate
● Extensibility

43

Evaluation:

Four programs: zookeeper, hadoop-hdfs, hbase, plume-util

44

Lines of code
Resource

Leaks Found
False positive

warnings
Annotations

427,858 49 121 286

Evaluation: Case Studies

Four programs: zookeeper, hadoop-hdfs, hbase, plume-util

45

Lines of code
Resource

Leaks Found
False positive

warnings
Annotations

427,858 49 121 286

Precision: 29%

Evaluation: Case Studies

Evaluation: Case Studies

Four programs: zookeeper, hadoop-hdfs, hbase, plume-util

46

Lines of code
Resource

Leaks Found
False positive

warnings
Annotations

427,858 49 121 286

~1 per 1,500 LoC

Evaluation: Comparison
3 analyses:
● RLC, our type-based analysis

● Eclipse’s high-confidence heuristic bug-finder

● Grapple, a whole-program graph reachability analysis

47

48

Recall

RLC

Eclipse

Grapple

100%

Evaluation: Comparison

49

Recall

RLC

Eclipse

Grapple

100%

Eclipse and Grapple miss
most real leaks

Evaluation: Comparison

50

Recall

RLC

Eclipse

Grapple

100%

Precision

Eclipse

100%

RLC

Grapple

Evaluation: Comparison

51

Recall

RLC

Eclipse

Grapple

100%

Precision

Eclipse

100%

RLC

Grapple

Time

Eclipse

RLC

Grapple

~37 hrs

Evaluation: Comparison

52

Recall

RLC

Eclipse

Grapple

100%

Precision

Eclipse

100%

RLC

Grapple

Time

Eclipse

RLC

Grapple

~37 hrs

Evaluation: Comparison

53

Recall

RLC

Eclipse

Grapple

100%

Precision

Eclipse

100%

RLC

Grapple

Time

Eclipse

RLCRLC

Grapple ...

1 hr

Evaluation: Comparison

Contributions
● Lightweight and modular resource leak verification via

accumulation analysis
● Local alias reasoning for precision

● Extensive evaluation
● Open-source implementation at checkerframework.org

54

