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ABSTRACT
Testing and other unsound analyses are developer-friendly but can-
not give guarantees that programs are free of bugs. Verification
and other extant sound approaches can give guarantees but often
require toomuch effort for everyday developers. In this work, we de-
scribe our efforts tomake verificationmore accessible for developers
by using specialized pluggable typecheckers—a relatively accessible
verification technology—to solve complex problems that previously
required more complex and harder-to-use verification approaches.
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1 INTRODUCTION
Software is everywhere, but correct software is not. Heavily-used
projects include known bugs [7]. 90% or more of Java applications
that use cryptography misuse it [16]. Despite decades of research,
buffer overflows remain a common causes of security issues [45].

Researchers and practitioners have developed two broad cat-
egories of techniques to help developers write correct software:
high-precision techniques such as testing that detect some bugs
with few false alarms, but miss many others; and, high-recall tech-
niques such as full formal verification by proof that find all bugs,
but have many false-alarms or require herculean effort to deploy.

An ideal bug-prevention technique would be:
• sound: it would never certify a program that contains bugs.
• precise: it would always certify a program with no bugs1.
• usable: it would be easy for developers to use. Ideally, it would
be fully automated.

1No practical analysis can be perfectly sound and precise, because any non-trivial
semantic property of a program is undecidable [49].
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• comprehensible: it would be easy for developers to understand
why it rejects a program, so fixing the problem is easy.

• efficient: it would require no time or space overhead at run
time, and would be fast to run at compile time.

• applicable: it would run on existing code as-is.

Neither testing nor verification meet these criteria. Testing (and
unsound static analyses), while easy for developers to deploy, can-
not prove that any kind of bug—even those a given approach might
purport to catch—is absent: as Dijkstra quipped: “tests can only
show the presence of bugs, not their absence” [44]. Verification is
sound—it provides a mathematical proof of correctness. But, extant
verification approaches fail one or more of the other criteria: proof
assistants require expertise developers do not have; SMT-backed
analysis engines produce output most developers do not understand
and are often imprecise, too slow, or both; type systems require
too much manual effort to write type annotations, produce too
many false positives, or both; abstract interpretations are either
imprecise, too slow, or both. All of these approaches have been
adopted in niches where their weaknesses are less relevant, but the
only verification most software engineers encounter remains the
static type systems of languages like Java.

We propose a middle ground: specialized typecheckers that can
prove that a particular bug definitely does not occur in a given
program. A specialized typechecker focuses on a narrow (but im-
portant) property, and therefore requires few annotations and can
maintain high precision—while still guaranteeing the absence of
the targeted error. The typechecker of a statically-typed languages
like Java is not an example of such a typechecker: it deals with a
broad class of errors at the cost of a significant annotation burden—
every type in a Java program is a cost to the developer of the safety
the type system provides. Like other verification technologies, the
choice of what typechecker or typecheckers to deploy on a given
program remains a major challenge for the developer, akin to de-
ciding what specification to verify or what tests to write.

Our typecheckers improve on testing by being sound and nearly
as easy for developers to use. The typecheckers improve on extant
verification techniques by retaining their soundness, but improving
the ease-of-use and practicality. Our work builds on previous work
in pluggable typecheckers [23, 26, 46] by focusing on the virtues
of simpler analyses. Simple analyses are easier for programmers to
understand, require fewer annotations, have high precision, and
can also cooperate to solve complex problems by each solving one
sub-problem. They are not a panacea, however: to be effective, de-
velopers must still choose the right typecheckers to run for the most
serious problems for their programs—and a collection of simple
analyses must be developed to prevent those problems.

Our key insight is that specializing typecheckers to narrow prob-
lem domains makes them precise and usable enough to become
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practical for developers to use in their everyday work. Our con-
tributions are the design, implementation, and evaluation of such
specialized typecheckers for a variety of problem domains: array
indexing (section 3.1), compliance (section 3.2), object construction
(section 3.3), and resource leaks (section 3.4). The key insight be-
hind the design of the checkers for the latter two domains—that a
certain class of typestate analyses [53] which we call accumulation
analyses can be efficiently implemented without a whole-program
alias analysis, as was previously thought necessary for soundness.
In our proposed work, we will use this insight to develop analyses
for other domains traditionally analyzed using typestate analysis.

2 RELATEDWORK AND BACKGROUND
We survey the most relevant techniques for detecting and prevent-
ing software bugs to our work, which we divide into two categories:
unsound techniques such as testing and sound verification. Our
approach aims for useful qualities from both: the usability and pre-
cision of unsound approaches and the soundness guarantees of
sound approaches, albeit in limited scenarios. Our key insight is to
start with the most usable form of verification we could identify—
specialized typecheckers—and extend its capabilities to detect new
kinds of defects while retaining or improving its usability.

Unsound techniques. Developers often validate that their pro-
grams work correctly by testing a fixed set of inputs or deploying
high-precision, unsound bug-finding tools. These approaches are
popular because they are easy for developers to use and usually
find some bugs. However, they cannot provide a guarantee that a
program is free of bugs, even bugs of a certain class.

Developers often write tests by hand. A test case consists of
an input and an expected output (the oracle). Researchers have
proposed many techniques for improving the efficacy of testing,
including continuous testing [50] and continuous integration [28],
fuzzing (e.g. [57]), and oracle generation from other development
artifacts (e.g. [12]). Other dynamic analyses besides testing help
programmers achieve correctness, including exceptions, invariant
detection [24], and “hybrid” analyses that combine static and dy-
namic analyses, such as concolic testing [51]. Static analyses with
high precision but no soundness guarantee have a similar trade-off.
Examples include analyses based on manually-curated heuristics
(“bug patterns”) [8], on symbolic execution [39], or on sound anal-
yses with relaxed restrictions to avoid common false positives [9].
Despite the effectiveness and popularity of testing and other un-
sound analyses, they offer no guarantees, unlike our work.

Verification and other sound techniques. Verification refers to any
approach that allows a developer to prove that their code is consis-
tent with some specification. We call such approaches sound, mean-
ing that guarantee that successfully-analyzed code will not violate
the specification when run (though in practice most implementa-
tions admit some unsoundness [41]). Approaches in this space in-
clude proof assistants such as Coq [10], which can verify arbitrarily-
complex specifications but require expert users to guide the tool;
translation of verification conditions to well-studied problems like
satisfiability-modulo-theories (SMT) [21, 40] or graph reachabil-
ity [48]; or dataflow analyses based on abstract interpretation [20] or
type systems, which are equivalently expressive [19]. While differ-
ent techniques have been successful in niches where their strengths

outweigh their costs—e.g. translation to graph theory for taint anal-
ysis [13] or abstract interpretation for industrial control code [11]—
they have not seen broad adoption among most developers. We
believe that this lack of adoption stems from these approaches’
usability and scalability: they require specialized knowledge to op-
erate or debug failures, and often are not applicable to legacy code,
requiring systems to be (re-)written to use them. Our goal is to
maintain the soundness of these approaches, while improving their
usability and scalability to make themmore attractive to developers,
and thus increase their impact on software quality in general.

Pluggable type systems. The most closely-related work to ours
is on pluggable types—our work builds and expands upon prior
work in this domain, and the specialized type systems described
herein are a kind of pluggable type system. The notion of pluggable
type qualifiers was first formalized in [26], who also prototyped
a pluggable type system for C that enforced that const annota-
tions were used correctly. The infrastructure for practical pluggable
types was then developed over the next few years by the commu-
nity [6, 15, 17, 27, 33, 42, 46]. The de-facto standard for Java is now
the Checker Framework (checkerframework.org), on which we im-
plemented our typecheckers. Other researchers have built many
type systems with this framework to address general programming
problems, including: nullness [23, 46], interning [23, 46], signature
strings [23], compiler message keys [23], immutability [18, 23, 46],
format strings [56], regular expressions [52], GUI effects [32], and
others. Our work builds upon and is inspired by these and other
pluggable type systems—it addresses problems that other pluggable
type systems do not and focuses on the benefits of small, specialized
checkers and how to deploy them effectively.

Pluggable typecheckers can be divided by generality. A general
pluggable typechecker is widely applicable throughout a program—
it prevents a class of bugs that could occur in many parts of the
program. The Nullness Checker of the Checker Framework, which
guarantees that every pointer dereference is non-null, is one exam-
ple of a general typechecker: Java is an object-oriented language, so
pointer dereferences are common. By contrast, a specialized type-
checker handles a class of bugs that is restricted to a small part
of the program text. Specialized typecheckers can be smaller and
simpler while retaining high precision, because they need not rea-
son about most of the program—though they verify that the whole
program is well-typed, the subset of the program that could be mis-
typed is small. An extant example of a specialized typechecker is the
Signature Checker of the Checker Framework, which verifies that
the various kinds of names for Java classes used by different parts
of the Java Virtual Machine and the Java compiler are not mistaken
for each other. Most programs do not even use such names, and
those that do typically use them sparingly. Generality is a spectrum:
given two general typecheckers, we could argue that one is more
general than the other. Generality is also subjective—we cannot yet
precisely measure it. Nevertheless, it is a critical design principle
of the work described in the next section.

3 COMPLETEDWORK
3.1 Array indexing
An array access a[i] is in-bounds if 0 ≤ i and i < lenдth(a).
Unsafe array accesses are a common source of bugs. Their effects
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include denial of service (via crashes or otherwise), exfiltration
of sensitive data, and code injection. They are the single most
important cause of security vulnerabilities [45]: buffer overflows
enabled the Morris Worm, SQL Slammer, Code Red, and Heartbleed,
among many others. A run-time system can prevent out-of-bounds
accesses, but at the cost of halting the program, which is undesirable.
Despite decades of research, preventing out-of-bounds accesses
remains an urgent, difficult, open problem.

We have developed a system to prove safety of bounds checks—
equivalently, to detect all possible erroneous array accesses—via a
collection of type systems. Typechecking is a nonstandard choice
for this problem. In previous attempts, types were too weak to
capture the rich arithmetic properties required to prove facts about
array indexing, could be hard to understand, and cluttered the code.
The contribution of this section is to show that a carefully-designed
collection of type systems—each specialized to a simple property—is
an excellent fit to this general programming problem.

We have designed a set of seven lightweight, easy-to-understand
specialized type systems. We implemented them in a tool, called the
Index Checker, which provides the strong guarantee that a program
is free of out-of-bounds array accesses, without the large human
effort typically required for such guarantees. The Index Checker
scales to and finds serious bugs in well-tested, industrial-size code-
bases: it found 89 bugs in three case studies (totaling 119,503 non-
comment, non-blank lines of Java code), with 507 false positives;
the bugs found included 5 priority-one2 bugs in Google Guava. We
directly compared the Index Checker to three other tools for detect-
ing array-indexing bugs: the heuristic bug-finder FindBugs [8], the
SMT-based theorem prover KeY [4], and the abstract-interpretation-
based tool Clousot [25]. Our experiments showed that the Index
Checker finds many more bugs than FindBugs and is more scalable
than KeY or Clousot.

This work is described in greater detail in [35].

3.2 Verified compliance
Lightweight verification can support other tasks besides program-
ming. One such task is compliance: the process of certifying that
code follows a set of rules—a compliance regime—that encode industry-
standard best practices. Large organizations—corporations, govern-
ments, etc.— require software to be compliant: processors of credit
card transactions must comply with the PCI DSS [47], cloud ven-
dors for the U.S. government must comply with FedRAMP [34],
and SOC reports are used by many companies to evaluate the secu-
rity posture of vendors [2]. Verification need not be an added task
for developers: it can automate a task—preparing for compliance
audits—that developers already perform.

Manual compliance audits of source code (the industry standard)
are expensive, error-prone, partial, and prone to regressions. We
have shown that many compliance controls—verifying properties
including encryption key length, cryptographic algorithm selec-
tion, cloud data store initialization, and the absence of hard-coded
credentials—can be audited using simple, specialized typecheckers,
avoiding the weaknesses of manual audits.

2The highest priority is zero, but at the time the Guava team had never acknowledged
a priority zero bug in their public repository

Auditors for AWS have accepted the output of our typecheckers
as audit evidence, showing that our approach is practical. A security
team ran two of our typecheckers as part of a large-scale security
audit (which covers both compliance-relevant and non-compliance-
relevant services) covering over 68 million lines of non-comment,
non-blank Java code, finding 173 true positive warnings, 1 false
positive warning, and requiring only 23 human-written type an-
notations. We also performed two open-source experiments using
these typecheckers. First, we open-sourced our tools and ran them
on 654 projects (about 5.7 million lines of non-comment, non-blank
Java code) randomly selected from GitHub that used relevant APIs,
finding that 24% of projects were verifiable, 39% of projects con-
tained true positive warnings and 25% of projects contained false
positive warnings (12% contained both, and 25% of projects were
not compatible with our infrastructure or timed out). In the sec-
ond, we compared our tools to other publicly-available tools for
finding and preventing mis-uses of cryptographic APIs, using a
benchmark from previous work [3]. We found that only our tools
were sound (i.e. did not miss errors), and that our tools’ precision
was only slightly worse (97% vs 100%) than the best-in-class among
the other tools. Since the cost of a false negative (i.e. missed alarm)
in the compliance domain is high—a failed audit—only our tools
are suitable replacements for manual compliance audits.

A full description of this work is available in [37].

3.3 Object construction via accumulation
The standard API for Java object construction contains one con-
structor for each combination of possible values that results in
a well-formed object. Alternate patterns for object construction
have been devised, such as the builder pattern [29]. To use the
builder pattern, the programmer creates a separate “builder” class,
which has two kinds of methods: setters, each of which provides a
logical argument—a value that ordinarily would be a constructor
argument; and a finalizer (often named build), which actually con-
structs the object and initializes its fields appropriately. The builder
pattern improves readability and flexibility in client code, but it
loses compile-time verification that logical arguments are provided.
Popular frameworks like Lombok [54] and AutoValue [14] ease cre-
ation of builders by automatically generating a builder class from
the class definition of the object to be constructed.

To verify that all required arguments are provided to builders,
we have devised a modular typestate analysis [53], for the special
case of an accumulation analysis. An accumulation analysis is a
program analysis where the analysis abstraction is a monotonically
increasing set, and some operation is legal only when the set is
large enough—that is, the estimate has accumulated sufficiently
many items. Accumulation analysis is a special case of typestate
analysis in which (1) the order in which operations are performed
does not affect what is subsequently legal, and (2) the accumulation
does not add restrictions; that is, as more operations are performed,
more operations become legal. The key advantage of our modular
accumulation analysis over a traditional typestate analysis is that
no expensive, whole-program alias analysis is required: aliasing in-
formation can improve precision, but is not required for soundness.

Our typechecker for the builder pattern accumulates calls to set-
ter methods, and checks that all required setters have been invoked
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when the finalizer is called. Our implementation automatically
derives specifications for Lombok and AutoValue builders, which
makes its annotation burden small. We evaluated it with case stud-
ies and a small user study. In a case study on a builder in the AWS
API that, if mis-used by a client, can expose the client to a security
vulnerability [43], we found 16 real vulnerabilities with just 3 false
positive warnings (84% precision) and 34 human-written annota-
tions in over 9.1 million lines of non-comment, non-blank Java code.
In the small user study, we found that industrial developers who
regularly use Lombok found it easier and faster to fix bugs resulting
from changes in a Lombok-generated builder when they used our
tool than when they used their usual debugging tools.

The full version of this work appears in [36].

3.4 Resource leaks
A resource leak occurs when a program allocates a resource, such as
a socket or file handle, but fails to deallocate it. Resource leaks cause
severe bugs, even in modern, heavily-used Java applications [30].
This state-of-the-practice differs little from two decades ago [55].
That resource leaks remain such a serious problem despite decades
of research and improvements in languages and tooling shows that
preventing them is an urgent, difficult, open problem.

We observe that detecting a resource leak for a variable involves
three parts: 1) tracking its must-call obligations, 2) tracking which
methods have been called on it, and 3) comparing the results of
these to check if its obligations have been fulfilled. Our key insight
is that (2) can be reduced to an accumulation problem (section 3.3),
and that (1) and (3) can be solved using standard taint-tracking and
gen-kill dataflow analyses, respectively. We developed a baseline
leak checker via this approach.

The precision of any accumulation analysis can be improved
by computing targeted aliasing information, and we devised three
novel techniques that use this capability to achieve precision in
practice: a lightweight ownership transfer system; a specialized
resource alias analysis; and a system to create a fresh obligation
when a non-final resource field is updated.

Our approach occupies a unique slice of the design space when
compared to prior approaches: it is sound and runs quickly com-
pared to heavier-weight approaches (running in minutes on pro-
grams that a state-of-the-art approach took hours to analyze). We
implemented our techniques for Java in an open-source tool, which
revealed 49 real bugs in widely-deployed software. It scales well,
has a manageable false positive rate (similar to the high-confidence
resource leak analysis built into the Eclipse IDE), and imposes only
a small annotation burden (1/1500 LoC) for developers.

The full version of this work appears in [38].

4 PLANNEDWORK
Sections 3.3 and 3.4 show that accumulation analysis is a power-
ful tool that allows specialized typecheckers to address problems
that, in prior work, had required more expensive whole-program
analyses. This section outlines our planned work on accumulation
analysis. The key research question we want to answer is “(RQ1)
what problems can accumulation analysis let us solve using spe-
cialized typecheckers?” This research question also invites some

interesting other questions, including “(RQ2) are there other prob-
lems that, like resource leak analysis, are traditionally solved with
a typestate analysis, but can be solved with an accumulation analy-
sis?” and “(RQ3) are there bespoke analyses for important problems
that, when examined, turn out to be accumulation analyses?”

One way to answer RQ1 is to examine what properties an ac-
cumulation analysis can express. For example, we know that an
accumulation can express: “call method A before method B” prop-
erties (section 3.3), and “always call method A before deallocation”
properties (section 3.4). But these properties only scratch the surface
of what accumulation analysis can express. For example, both of
these properties accumulate method calls, but in general an accumu-
lation analysis could accumulate any kind of property. An example
of accumulating something other than method calls is checking
that a constructor actually initializes all non-null fields to non-null
values: fields are accumulated. Initialization is a well-studied prob-
lem, and we suspect that existing initialization checkers might be
accumulation analyses (i.e., might be part of the answer to RQ3).

Another example of accumulation is “def-use” properties of APIs.
A def-use property has the form “if methodA is called with argument
P, then method B must be called with argument Q before method
C is called (or deallocation).” One such property that can lead to
subtle bugs when using AWS’ DynamoDB API [22] is that the client
must supply consistent filter expressions and expression attribute
names and values. When querying the database, the client supplies
both as strings; an accumulation analysis for each can accumulate
what the client supplies, and the results of these two accumulation
analyses can be compared before the query method is called. Other
NoSQL database query languages might suffer from similar issues.

Dependency injection frameworks like Guice [31] provide logical
arguments in other ways than calling methods directly (for example,
by attaching @Provider annotations to classes), which can lead to
mal-formed objects in the same way that mis-uses of builders can
(section 3.3). Because we know that the underlying problem is
accumulation of logical arguments, we could build a checker for a
particular dependency injection framework by examining how it
provides logical arguments.

To help answer RQ2, we plan to examine how typestate analysis
is used in practice by examining programs written in typestate-
oriented languages like Plaid [5] to determine which of the types-
tates used could be expressed as accumulation. We hypothesize that
many (or even most) of the typestate systems used in real programs
in such languages will be expressible as accumulation.
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