
Compile-time Detection of Machine Image Sniping
Martin Kellogg

Paul G. Allen School of Computer Science and Engineering
University of Washington

Seattle, USA
kelloggm@cs.washington.edu

Abstract—Machine image sniping is a difficult-to-detect secu-
rity vulnerability in cloud computing code. When programmati-
cally initializing a machine, a developer specifies a machine image
(operating system and file system). The developer should restrict
the search to only those machine images which their organization
controls: otherwise, an attacker can insert a similarly-named
malicious image into the public database, where it might be
selected instead of the image the developer intended. We present
a lightweight type and effect system that detects requests to a
cloud provider that are vulnerable to an image sniping attack,
or proves that no vulnerable request exists in a codebase. We
prototyped our type system for Java programs that initialize
Amazon Web Services machines, and evaluated it on more than
500 codebases, detecting 14 vulnerable requests with only 3 false
positives.

Index Terms—pluggable types, AMI sniping, AWS, EC2, Java,
lightweight verification, DescribeImagesRequest

I. THE PROBLEM

A client of a cloud services provider can create virtual
computers programmatically. An image is the virtual computer’s
file system; it includes an operating system and additional
installed software, and so it determines what code runs on the
virtual computer.

For example, a client of Amazon Web Services indicates
what image to use via the DescribeImagesRequest API (like the
client in fig. 2). This API (which is shown in fig. 1) suffers a
serious security vulnerability [1].

There are three safe ways to select which image to use when
sending a request to the API:

• Use the withImageIds method to specify a globally unique
image ID.

• Use the withOwners method to restrict the images searched
to those owned by the requester or another trusted party.

• Use the withFilters method to set criteria that restrict the
image to one that is owned by a trusted party using the
“owner”, “owner-id”, “owner-alias”, or “image-id” filters.

The unsafe example in fig. 2 uses the “name” filter without an
owner filter, which causes the API to return all the images that
match the name. This enables the so-called “AMI (Amazon
Machine Image) sniping attack” [1], in which an attacker
intentionally creates a new image whose name collides with
the desired image, permitting the attacker to surreptitiously
inject their own code onto newly allocated machines. Any
call that searches the public database without specifying some
information that an adversary cannot fake is vulnerable to a
sniping attack and should be forbidden.

package com.amazonaws.services.ec2.model;

class DescribeImagesRequest {
DescribeImagesRequest() {...}
withOwners(String... owners) {...}
withFilters(Filter... filters) {...}
withImageIds(String... imageIds) {...}

}

Fig. 1: The DescribeImagesRequest API. A client constructs a
DescribeImagesRequest, modifies it via the with* methods, then
sends it to AWS to obtain a machine image.

request = new DescribeImagesRequest();
filter = new Filter("name", "RHEL-7.5_HVM_GA");
request.withFilters(filter);
api.describeImages(request);

Fig. 2: Client use of the DescribeImagesRequest API that is
vulnerable to an AMI sniping attack.

II. OUR APPROACH

Our key insight is that only certain combinations of
method calls should be permitted. We therefore designed
a type system that records, for each object, the set of methods
that have been invoked on that object. This information is
represented in a type qualifier named @CalledMethods. A type
qualifier is a modifier on a type, which makes it more specific.
Our implementation operates on Java programs, which represent
type qualifiers via annotations, which start with @.

@CalledMethods(methodList) Object obj means that methods
in methodList have definitely been called on obj. For example,
if a() and b() have been called on obj, then obj has type
@CalledMethods({“a”, “b”}). As additional methods are called
using the same receiver expression, the type of that expression
is refined to include more methods. Figure 3 shows part of the
type hierarchy. The subtyping rule is:

A ⊇ B

@CalledMethods(A) v @CalledMethods(B)

Our type system also supports a disjunctive type, @CalledMeth-

odsPredicate(P), which permits specifications like “withOwners

∨ withImageIds”. A type qualified by @CalledMethods(A) is a
subtype of a type qualified by @CalledMethodsPredicate(P) if
and only if A makes P evaluate to true.

To detect and prevent erroneous calls, an API designer writes
a specification—that is, they write types on formal parameters.
For the AWS AMI sniping example, the corresponding
specification is written on the parameter to the describeImages

API in the AWS SDK (for presentation, the full specification
has been shortened):

@CalledMethods({}) = >

@CalledMethods({”withOwners”})

@CalledMethods({”withFilters”, ”withOwners”})

⊥
Fig. 3: Part of the type hierarchy for representing which
methods have been called. If an expression’s type has qualifier
@CalledMethods(”withFilters”, ”withOwners”), then the methods
“withFilters” and “withOwners” have definitely been called on the
expression’s value. Arrows represent subtyping relationships. The
diagram shows a part of the type hierarchy; the full hierarchy
is a lattice of arbitrary size.

TABLE I: The results of applying our AMI detection tool to
two corpora of closed- and open-source projects. We measured
non-comment, non-blank lines of Java code.

Open-source Closed-source
Projects 39 509
Lines of code 490K 8.7M
Annotations 4 29
True Positives 1 13
False Positives 2 1

DescribeImageResponse describeImages(
@CalledMethodsPredicate("withImageIds || withOwners")
DescribeImageRequest request);

Given this specification for describeImages, the typechecker
rejects any call whose receiver has not had either withImageIds

or withOwners called on it. This specification is sound: it
prevents all AMI sniping attacks.

In general, the typechecker either:
• proves that a codebase only contains calls that are

consistent with the specification, or
• issues an error, indicating possibly-defective code.

We implemented this type system for Java using the Checker
Framework [2]. The framework provides local type inference,
among other conveniences, which means that programmers
only need write type qualifiers on formal parameters, fields,
and return types. However, because most types are inferred,
even these are rarely needed.

III. EVALUATION

We evaluated our approach on two corpora of codebases:
• 39 open-source codebases from GitHub. We searched

GitHub for projects that use the describeImages API and
then filtered out (for technical reasons) projects whose
root directory did not contain a Gradle or Maven build
file and those that did not build with a Java 8 compiler.
We also discarded duplicates (copies and forks) and the
AWS Java SDK itself.

• 509 codebases from an anonymous industrial partner that
contain one or more calls to the describeImages() API.

Table I shows the results. The tool overall achieved 82%
precision, and required one annotation per 278,000 lines of
code. It is easy to find the places where annotations are needed,
because the tool initially issues warnings in those locations.

request = new DescribeImagesRequest();
if (imageIds != null) {

request.setImageIds(Arrays.asList(imageIds));
}
result = ec2Client.describeImages(request);

Fig. 4: A true positive AMI sniping vulnerability in an API in
Netflix’s SimianArmy project.

The true positive we discovered in the open-source evaluation
was in the project Netflix/SimianArmy; the relevant code
appears in fig. 4. If the list of image ids is null, then the
code (by design) fetches every AMI available. Though the
method’s documentation does not say so, it is incumbent on
any caller of this code to filter the result after the fact.

Both false positives in the open-source experiments were
due to imprecision in the Checker Framework’s generic
inference algorithm, and were easily discarded as spurious
(since they occurred in code that manifestly did not call the
AWS API). We reported the imprecision to the framework’s
maintainers, who acknowledged it as a bug. When that bug is
fixed, our tool will achieve 100% precision on those codebases.

IV. RELATED WORK

No other static analysis exists which detects an image sniping
attack. AWS acknowledged the vulnerability, but cannot revoke
this widely-used API nor change its behavior incompatibly.
Their proposed mitigation is “to follow the best practice and
specify an owner” [3]. An independent security researcher
published instructions to detect if running virtual machines
are impacted, but said that following best practices is the best
mitigation [4]. A sound static analysis like ours does not depend
on programmers to remember to use the best practice.

There are static analyses that detect security issues, including
Coverity [5], CogniCrypt [6] and CryptoGuard [7]. None of
these tools contains rules for finding image sniping attacks.

Our type system can be viewed as a limited form of
typestate [8] in which objects can only accumulate method
calls. This limited form can be efficiently implemented without
an expensive, potentially imprecise alias analysis.

V. CONCLUSION AND FUTURE WORK

We have presented an effective, sound analysis for machine
image sniping. Our analysis for method calls is applicable to
other problems beyond machine image sniping. For example,
our system can model object construction via the builder and de-
pendency injection patterns, permitting us to guarantee correct
construction at compile time rather than suffering a run-time
error. In fact, the machine image sniping problem described here
is an example of a builder object (the DescribeImagesRequest)
that can be constructed in a dangerous way, resulting in a silent
security vulnerability.

ACKNOWLEDGMENTS

Thanks to my collaborators Manu Sridharan, Manli Ran,
and Michael D. Ernst.

REFERENCES

[1] “CVE-2018-15869,” Available from MITRE, CVE-ID CVE-2018-15869,
2018. [Online]. Available: https://cve.mitre.org/cgi-bin/cvename.cgi?
name=CVE-2018-15869

[2] M. M. Papi, M. Ali, T. L. Correa Jr., J. H. Perkins, and M. D. Ernst,
“Practical pluggable types for Java,” in ISSTA 2008, Proceedings of the
2008 International Symposium on Software Testing and Analysis, Seattle,
WA, USA, July 2008, pp. 201–212.

[3] J. Bicha and N. Alvine, “Cve-2018-15869: –owners flag isn’t mandatory,”
https://github.com/aws/aws-cli/issues/3629, 2018, accessed 5 June 2019.

[4] S. Piper, “Investigating malicious amis,” https://summitroute.com/blog/
2018/09/24/investigating malicious amis/, 2018, accessed 5 June 2019.

[5] A. Bessey, K. Block, B. Chelf, A. Chou, B. Fulton, S. Hallem, C. Henri-
Gros, A. Kamsky, S. McPeak, and D. Engler, “A few billion lines of code

later: using static analysis to find bugs in the real world,” Communications
of the ACM, vol. 53, no. 2, pp. 66–75, 2010.

[6] S. Krüger, J. Späth, K. Ali, E. Bodden, and M. Mezini, “Crysl: An
extensible approach to validating the correct usage of cryptographic apis,”
in European Conference on Object-Oriented Programming (ECOOP).
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018.

[7] S. Rahaman, Y. Xiao, S. Afrose, F. Shaon, K. Tian, M. Frantz, Danfeng,
Yao, and M. Kantarcioglu, “Cryptoguard: High precision detection of
cryptographic vulnerabilities in massive-sized java projects,” 2018.

[8] R. E. Strom and S. Yemini, “Typestate: A programming language
concept for enhancing software reliability,” IEEE Transactions on Software
Engineering, no. 1, pp. 157–171, 1986.

