Compile-time detection of
machine image sniping

Martin Kellogg
University of Washington

What is a machine image?

cloud computer

What is a machine image?

hat software to run?

cloud computer

What is a machine image?

hat software to run?

cloud computer

“machine image”

4

What is a machine image?

hat software to run?
This softwg

cloud computer

e image”

How to choose a machine image:

Look it up in arepository.

By unique id:
aws ec2 describe-images --imagelds ami-5731123e
By owner and name:

aws ec?2 describe-images --owners myOrg \
-—-filters "Name=name,Values=ubuntuloc.04-*"
By name alone:

aws ec?2 describe-images \

—-—-filters "Name=name,Values=ubuntuloc.04-*"

How to choose a machine image:

Look it up in arepository.

By unique id:
aws ec2 describe-images --imagelds ami-5731123e
By owner and name:

aws ec?2 describe-images --owners myOrg \
-—-filters "Name=name,Values=ubuntuloc.04-*"
By name alone:

aws ec?2 describe-images \

—-—-filters "Name=name,Values=ubuntuloc.04-*"

How to choose a machine image:

Look it up in arepository.

By unique id:
aws ec2 describe-images --imagelds ami-5731123e
By owner and name:

aws ec?2 describe-images --owners myOrg \
——filters "Name=name,Values=ubuntul6.04-*"
By name alone:

aws ec?2 describe-images \

——filters "Name=name,Values=ubuntul6c.04-*"

How to choose a machine image:

Look it up in arepository.

By unique id:
aws ec2 describe-images --imagelds ami-5731123e
By owner and name:

aws ec?2 describe-images --owners myOrg \
-—-filters "Name=name,Values=ubuntuloc.04-*"
By name alone:

aws ec?2 describe-images \

—-—-filters "Name=name,Values=ubuntuloc.04-*"

X

This isn't hypothetical...

Finding an AMI Using the AWS CLI

You can use AWS CLI commands for Amazon EC2 to list only the Linux AMIs that meet your needs. After
locating an AMI that meets your needs, make note of its ID so that you can use it to launch instances. For
more information, see Launching an Instance Using the AWS CLI in the AWS Command Line Interface User
Guide.

The describe-images command supports filtering parameters. For example, use the --owners parameter to
display public AMIs owned by Amazon.

“@

aws ec2 describe-images --owners self amazon

You can add the following filter to the previous command to display only AMIs backed by Amazon EBS:

@@

-~-filters "Name=root-device-type,Values=ebs"

Important

Omitting the --owners flag from the describe-images command will return all images for which
you have launch permissions, regardless of ownership.

10

This isn't hypothetical...

Finding an AMI Using the AWS CLI

You can use AWS CLI commands for Amazon EC2 to list only the Linux AMIs that meet your needs. After
locating an AMI that meets your needs, make note of its ID so that you can use it to launch instances. For
more information, see Launching an Instance Using the AWS CLI in the AWS Command Line Interface User
Guide.

The describe-images command supports filtering parameters. For example, use the --owners parameter to
display public AMIs owned by Amazon.

“@

aws ec2 describe-images --owners self amazon

You can add the following filter to the previous command to display only AMIs backed by Amazon EBS:

@
--filters "Name=rogisdoiihGtmbmpetrimreywmiyy

Important

Omitting the --owners flag from the describe-images command will return all images for which
you have launch permissions, regardless of ownership. 11

This isn't hypothetical...

DescribelImagesRequest request = new DescribelmagesRequest() ;
request.withFilters (new Filter ("name'", "RHEL-7.5 HVM GA™));
apl.describeImages (request) ;

This isn't hypothetical...

DescribeImagesRequest request = new DescribeImagesRequest () ;

] ilters (new Filter ("name", "RHEL-7.5 HVM GA"));
ages (request) ;

request.

apl.desc

This isn't hypothetical...

DescribeImagesRequest request = new DescribeImagesRequest () ;

] ilters (new Filter ("name", "RHEL-7.5 HVM GA"));
ages (request) ;

Unsafe: returns all
images with that name
from public repo!

request.

apl.desc

14

How to make this client safe?

DescribelImagesRequest request = new DescribelmagesRequest() ;
request.withFilters (new Filter ("name'", "RHEL-7.5 HVM GA™));
apl.describeImages (request) ;

How to make this client safe?

DescribeImagesRequest request

request.withFilters (new Filter ("name",

request.withOwners (“"myOrg”) ;

apl.describelImages (request) ;

new DescribelImagesRequest() ;
"RHEL-7.5 HVM GA"));

16

How to prove this safe?

How to prove this safe?
A traditional approach: typestate

18

How to prove this safe?
A traditional approach: typestate

19

How to prove this safe?
A traditional approach: typestate

create a finite state machine for each object

on method calls, transition the state machine

only permit certain calls in certain states

use alias analysis to ensure all copies are in same state

20

How to prove this safe?
A traditional approach: typestate

e create afinite state machine for each object
e on method calls, transition the state machine
e only permit certain calls in certain states

’ .y L oo . o

21

Advantages of a type system

e still provides a proof
e modular = scalable
e no alias analysis = cheap

22

Specifying describeImages ()

DescribeImageResponse describeImages (
@CalledMethods ("withImageIds || withOwners")
DescribeImageRequest request) {

23

Type hierarchy

@CalledMethods ({}) Object

f

dCalledMethods ({“"foo”}) Object

f

@CalledMethods ({“foo”, “bar”})

Object

24

Experimental results

No. projects 548
Source LoC 9.2M
True positives 14

False positives | 3

25

Example: Netflix/SimianArmy

List<Image> describeImages (String... 1magelds)
DescribeImagesRequest request =
DescribeImagesRequest () ;

(imagelIds !=) A
request.setImagelds (Arrays.asList (imagelIds)) ;
DescribeImagesResult result =

ec2client.describeImages (request) ;

result.getImages () ;

{

26

Accumulation analysis

e Our type system accumulates method calls

27

Accumulation analysis

e Our type system accumulates method calls

Insight: can generalize to any analysis that accumulates
something

28

Accumulation analyses

e machine sniping (this talk!)

29

Accumulation analyses

e machine sniping (this talk!)
e the builder pattern

30

Accumulation analyses

e machine sniping (this talk!)
e the builder pattern
e dependency injection providers

31

Contributions

e Accumulation analysis can detect machine-image
sniping vulnerabilities -- and more

e Experiments that show:
o those vulnerabilities exist in practice, and
o we can find them!

32

33

Lombok/AutoValue builders

Lombok and AutoValue generate builder implementations
from structs

Fields can be marked @NonNull; NPE if the corresponding
setter isn’t called

34

Lombok/AutoValue builders

@Builder

public class UserlIdentity {
private final @NonNull String name;
private final @NonNull String displayName;
private final (@NonNull ByteArray id;

35

Lombok/AutoValue builders

UserIdentity identity =
UserlIdentity.builder ()
.name (username)
.displayName (displayName)
.1d (generateRandom (3”))
build () ;

36

Lombok/AutoValue builders

UserIdentity identity =
UserlIdentity.builder ()
.name (usernam
.displayName (
.id (generateR
build () ;

37

Lombok/AutoValue builders

Userldentity identity =
UserlIdentity.builder ()
.name (username)

.1d (generateRandom (
build () ;

))

38

Lombok/AutoValue builders

Userldentity identity =
UserlIdentity.builder ()
.name (use

.1d (genez
.build()

39

Lombok user study

6 industrial developers with Java + Lombok experience

Task: add a new enonnu1l1 field to a builder, and update all

call sites

Results:
e 6/6 succeeded with our tool, only 3/6 without

e Those who succeeded at both 1.5x faster with our

tool
e ‘It was easier to have the tool report issues at compile

time”

40

Lombok/AutoValue case studies

5 projects: 2 Lombok, 3 AutoValue (~500k sloc)
563 calls verified, 1 true positive (google/gapic-generator)

110 annotations, 19 false positives

41

