| enjoy teaching, and the chance to teach is my primary motivation for seeking an academic job.
I've always sought out the opportunity to teach: my first job was teaching kids LOGO, and | have
been a TA throughout my undergraduate and graduate career. Below, I'll describe some of my
teaching experience and then briefly explain my teaching philosophy.

Teaching experience. | have been a TA at every level of university education:
e graduate classes for PhD students (1x: program analysis)
e graduate classes for part-time, working master’s students (1x: testing and
debugging)
e senior-level undergraduate electives (5x: software engineering, programming
languages, game design)
e core undergraduate classes (6x: data structures, intro to CS)

In these TA roles I've experienced most parts of teaching: I've designed and given lectures,
designed and graded homework problems, designed and graded exam questions, designed
slide sets for TA-led discussion sections, managed other TAs, held office hours, answered
student questions online, designed and maintained course infrastructure, etc. I've also taught an
undergraduate seminar that | designed myself. Teaching is fun, and | don’t know a more
rewarding feeling than seeing a student I've taught go on to succeed.

Teaching philosophy. When I’'m teaching, | have four core priorities: choosing the right implicit
curricula, giving fast feedback to students, balancing consistency and fairness, and using
enthusiasm to engage students.

Implicit curricula. A course should not just be a set of facts presented by a lecturer; it should
also have an implicit curriculum to develop the skills of the students. In my experience as a TA,
the best instructors | worked for always knew the implicit curricula of their classes and shared it
with us. For example, in an undergraduate data structures class it is a disservice to the students
to only teach the implementation details of the data structures. Students perhaps should also
develop their ability to understand why code is written the way that it is: a skill that they will need
in more advanced courses and in their careers. Courses—even with ostensibly similar
curricula—with different implicit curricula demand different designs. An undergraduate data
structures class whose implicit curriculum is learning to read code written by others must be
taught differently than one whose implicit curriculum is deeply understanding recursion. When |
teach, my first step is to identify the course’s implicit curriculum within the context of a student’s
overall education. Especially in undergraduate education, where reusing teaching materials
between instructors is common, it is easy to forget to think about the implicit curriculum—but
being aware of it is half the battle.

Fast feedback. \When training a dog, if you don’t catch them doing something bad while they’re
actively doing it, disciplining them later won’t teach them anything or change their behavior in
the future. The same principle also applies to people: students learn better when their mistakes
are corrected as quickly as possible. This observation should pervade course design: homework
assignments should be short so that TAs can grade them within a day or two, exam problems

should be designed like a proof produced by a verification tool—hard to find the solution but
easy to check it—and automated real-time feedback should be used whenever possible
(programming assignments often have this property). My enthusiasm for this idea comes from
seeing it work well in my undergraduate compilers class, whose final assignment was to build
an optimizing compiler for a toy language. A web dashboard showed which compiler produced
the fastest code for the benchmarks. Students submitted anonymously (important not to
discourage students), but the same profiling tests were used to determine the students’ grades,
so students always knew where they stood.

Consistency and fairness. An instructor should try to achieve both consistency—treating all
students the same—and fairness—rewarding students proportionately to their learning.
Consistency and fairness can be in tension: consistently grading a student who missed a
significant assessment due to illness would be unfair to that student, but giving that student an
easier path to a good grade would be inconsistent. An instructor who fails to balance these two
demands can discourage or disillusion students. Further, | believe that the appropriate balance
is a spectrum that changes with the course. A core undergraduate class taken by hundreds of
students should emphasize consistency because the instructor cannot fairly evaluate the
circumstances of hundreds of individual students, which might lead to bias. A class for PhD
students working on individual projects related to their research should emphasize fairness so
that each student can succeed both in their own research and in the class, according to the
criteria that matter in their work.

Engagement. The preceding philosophical ideals are primarily about course design and
organization. But for these things to matter, students have to want to be in a class. For this
reason, | work hard to be an enthusiastic and energetic lecturer, and to actively encourage
student participation. I've found that students respond well to simple manipulations, especially
when they know they’re being manipulated: for example, when | want students to ask questions
in class, telling them that I'll give them a piece of candy the first time they ask a question works
well as an inducement. They know that it's a bribe—and yet they still participate more because
of it.

