
Verification for working developers

Martin Kellogg
University of Washington

1

Bugs in software

2

etc.

Bugs in software

3

4

Goal: every developer uses verification

5Can find all the bugs

Preventing bugs: a gross oversimplification

Goal

Usable for
everyday
developers

Preventing bugs: a gross oversimplification

6

Testing

Can find all the bugs

Goal

Usable for
everyday
developers

Preventing bugs: a gross oversimplification

7

Testing

Can find all the bugs

“Testing can only show the presence
of bugs, not their absence”

Goal

Usable for
everyday
developers

Preventing bugs: a gross oversimplification

8

Usable for
everyday
developers

Testing

Verification

Can find all the bugs

Goal

Preventing bugs: a gross oversimplification

9

Usable for
everyday
developers

Testing

Verification

Can find all the bugs

Goal

My work

Verification for working developers

Approach #1: make verification technologies more expressive

10

Verification for working developers

Approach #1: make verification technologies more expressive

“find clever ways to solve hard problems using simple techniques”

11

Verification for working developers

Approach #1: make verification technologies more expressive

“find clever ways to solve hard problems using simple techniques”

12

This talk: accumulation typestates

Verification for working developers

Approach #1: make verification technologies more expressive

“find clever ways to solve hard problems using simple techniques”

Approach #2: convince developers to use verification

13

Verification for working developers

Approach #1: make verification technologies more expressive

“find clever ways to solve hard problems using simple techniques”

Approach #2: convince developers to use verification
● find new applications
● improve the usability

14

Verification for working developers

Approach #1: make verification technologies more expressive

“find clever ways to solve hard problems using simple techniques”

Approach #2: convince developers to use verification
● find new applications
● improve the usability

15

This talk: compliance

Talk outline

● Expressivity: accumulation typestate automata

○ theory: what is an accumulation typestate?

○ practice: is accumulation analysis useful?

● Convincing developers: compliance verification

16

17

Typestate analysis

● Classic static program analysis technique

● First proposed by Strom & Yemeni (1986)

● Extensive literature: over 18,000 hits on Google

Scholar

● Sound typestate analysis is expensive due to aliasing

18

CLOSED

open()
OPENED

read(),
close()

close()

read()

open()

X

Typestate specification via FSM

19

CLOSED

open()
OPENED

read(),
close()

close()

read()

open()

X

File f = …;
f.open();
f.close();
f.read();

Typestate specification via FSM

20

CLOSED

open()
OPENED

read(),
close()

close()

read()

open()

X

File f = …;
f.open();
f.close();
f.read();f

Typestate specification via FSM

21

CLOSED

open()
OPENED

read(),
close()

close()

read()

open()

X

File f = …;
f.open();
f.close();
f.read();

f

Typestate specification via FSM

22

CLOSED

open()
OPENED

read(),
close()

close()

read()

open()

X

File f = …;
f.open();
f.close();
f.read();f

Typestate specification via FSM

23

CLOSED

open()
OPENED

read(),
close()

close()

read()

open()

X

File f = …;
f.open();
f.close();
f.read();

f
Typestate error: f
cannot read() in
state CLOSED

Typestate specification via FSM

24

File f = …;
f.open();
File g = f;
f.close();
g.read();

CLOSED

open()
OPENED

read(),
close()

close()

read()

open()

X

Why is typestate expensive?

25

File f = …;
f.open();
File g = f;
f.close();
g.read();

CLOSED

open()
OPENED

read(),
close()

close()

read()

open()

X

Why is typestate expensive?

f

26

File f = …;
f.open();
File g = f;
f.close();
g.read();

CLOSED

open()
OPENED

read(),
close()

close()

read()

open()

X

Why is typestate expensive?

f

27

File f = …;
f.open();
File g = f;
f.close();
g.read();

CLOSED

open()
OPENED

read(),
close()

close()

read()

open()

X

Why is typestate expensive?

f,g

28

File f = …;
f.open();
File g = f;
f.close();
g.read();

CLOSED

open()
OPENED

read(),
close()

close()

read()

open()

X

Why is typestate expensive?

f

g

29

File f = …;
f.open();
File g = f;
f.close();
g.read();

CLOSED

open()
OPENED

read(),
close()

close()

read()

open()

X

Why is typestate expensive?

f

g

30

File f = …;
f.open();
File g = f;
f.close();
g.read();

CLOSED

open()
OPENED

read(),
close()

close()

read()

open()

X

Why is typestate expensive? Aliasing.

f

g

No error?

31

File f = …;
f.open();
File g = f;
f.close();
g.read();

CLOSED

open()
OPENED

read(),
close()

close()

read()

open()

X

Why is typestate expensive? Aliasing.

f

g

No error? “false negative”

32

File f = …;
f.open();
File g = f;
f.close();
g.read();

CLOSED

open()
OPENED

read(),
close()

close()

read()

open()

X

Why is typestate expensive? Aliasing.

f

g

No error? “false negative”

Sound typestate requires aliasing information

● A sound typestate analysis must track all aliases to keep

FSMs in sync

33

Sound typestate requires aliasing information

● A sound typestate analysis must track all aliases to keep

FSMs in sync

● Three prior approaches:

1. ignore aliasing and be unsound (e.g., Emmi et al. 2021)

34

Sound typestate requires aliasing information

● A sound typestate analysis must track all aliases to keep

FSMs in sync

● Three prior approaches:

1. ignore aliasing and be unsound (e.g., Emmi et al. 2021)

2. restrict aliasing (e.g., via ownership types)

35

e.g., Bierhoff et al. 2009, Clark et al. 2013, Rust

Sound typestate requires aliasing information

● A sound typestate analysis must track all aliases to keep

FSMs in sync

● Three prior approaches:

1. ignore aliasing and be unsound (e.g., Emmi et al. 2021)

2. restrict aliasing (e.g., via ownership types)

3. whole-program may-alias analysis (expensive)

36

Tan et al. 2021 report hours for real programs

Sound typestate requires aliasing information

● A sound typestate analysis must track all aliases to keep

FSMs in sync

● Three prior approaches:

1. ignore aliasing and be unsound (e.g., Emmi et al. 2021)

2. restrict aliasing (e.g., via ownership types)

3. whole-program may-alias analysis (expensive)

37

Key question: does typestate analysis
always need aliasing information?

Insight: aliasing information is only required
for some typestate automata

38

Insight: aliasing information is only required
for some typestate automata

Which ones?

39

Accumulation typestates

accumulation typestate automaton:

for any error-inducing sequence S = t1, …, ti,

all subsequences of S that end in ti

are also error-inducing

40Kellogg, Shadab, Sridharan, Ernst. Accumulation Analysis. Under submission.

Accumulation typestates

accumulation typestate automaton:

for any error-inducing sequence S = t1, …, ti,

all subsequences of S that end in ti

are also error-inducing

Key theorem: Accumulation typestates are exactly those

that can be checked soundly without aliasing information

41Kellogg, Shadab, Sridharan, Ernst. Accumulation Analysis. Under submission.

42

CLOSED

open()
OPENED

read(),
close()

close()

read()

open()

X

Is it an accumulation typestate automaton?
for any error-inducing sequence S = t1, …, ti,

all subsequences of S that end in ti

are also error-inducing

43

CLOSED

open()
OPENED

read(),
close()

close()

read()

open()

X

Is it an accumulation typestate automaton?
for any error-inducing sequence S = t1, …, ti,

all subsequences of S that end in ti

are also error-inducing

No!
S = read()

44

CLOSED

open()
OPENED

read(),
close()

close()

read()

open()

X

Is it an accumulation typestate automaton?

S = open(), close(), read().

for any error-inducing sequence S = t1, …, ti,

all subsequences of S that end in ti

are also error-inducing

45

CLOSED

open()
OPENED

read(),
close()

close()

read()

open()

X

Is it an accumulation typestate automaton?

No!
S = open(), close(), read().

S′ = open(), close(), read()
is not error-inducing!

for any error-inducing sequence S = t1, …, ti,

all subsequences of S that end in ti

are also error-inducing

46

Is it an accumulation typestate automaton?

“only call read() after calling

open() at least once”

for any error-inducing sequence S = t1, …, ti,

all subsequences of S that end in ti

are also error-inducing

47

Is it an accumulation typestate automaton?

“only call read() after calling

open() at least once”

CLOSED

open()
OPENED

read()

read()

X

for any error-inducing sequence S = t1, …, ti,

all subsequences of S that end in ti

are also error-inducing

48

Is it an accumulation typestate automaton?

“only call read() after calling

open() at least once”

CLOSED

open()
OPENED

read()

read()

X

Yes!

This is partial verification

for any error-inducing sequence S = t1, …, ti,

all subsequences of S that end in ti

are also error-inducing

49

Aside: how hard is it to decide if a typestate
automaton is accumulation?

50

Aside: how hard is it to decide if a typestate
automaton is accumulation?

● As easy as checking DFA equivalence

○ Result due to Higman’s Theorem (1952)

51

Aside: how hard is it to decide if a typestate
automaton is accumulation?

● As easy as checking DFA equivalence

○ Result due to Higman’s Theorem (1952)

“The subsequence language of any language
whatsoever over a finite alphabet is regular.”

Accumulation typestates

accumulation typestate automaton:

for any error-inducing sequence S = t1, …, ti,

all subsequences of S that end in ti

are also error-inducing

Key theorem: Accumulation typestates are exactly those

that can be checked soundly without aliasing information

52

Accumulation typestates

accumulation typestate automaton:

for any error-inducing sequence S = t1, …, ti,

all subsequences of S that end in ti

are also error-inducing

Key theorem: Accumulation typestates are exactly those

that can be checked soundly without aliasing information

53

Proof intuition

Key theorem: Accumulation typestates are exactly those

that can be checked soundly without aliasing information

54

Proof intuition

Key theorem: Accumulation typestates are exactly those

that can be checked soundly without aliasing information

Intuition for ⇒:
1. without aliasing information, analysis observes a

subsequence of actual transitions

55

Proof intuition

Key theorem: Accumulation typestates are exactly those

that can be checked soundly without aliasing information

Intuition for ⇒:
1. without aliasing information, analysis observes a

subsequence of actual transitions

2. if analysis observes a transition that leads to an error

at run time, the final transition must be error-inducing
56

Proof intuition

Key theorem: Accumulation typestates are exactly those

that can be checked soundly without aliasing information

Intuition for ⇒:
1. without aliasing information, analysis observes a

subsequence of actual transitions

2. if analysis observes a transition that leads to an error

at run time, the final transition must be error-inducing
57

for any error-inducing sequence S = t1, …, ti,

all subsequences of S that end in ti

are also error-inducing

A brief review

● An accumulation typestate automaton is

closed under error-inducing subsequences

with the same error-inducing transition

● Accumulation typestate automata are

exactly those that can be checked

without aliasing information
● Higman’s theorem is cool

58

Measuring success

Goal: every developer uses verification

59

Measuring success

Goal: every developer uses verification

 “Are the resulting analyses useful & usable for developers?”

60

Measuring success

Goal: every developer uses verification

 “Are the resulting analyses useful & usable for developers?”

61

Implementation Evaluation

Implementation: accumulation analysis

● Directly tracks the sequence of transitions each

variable has observed rather than the FSM

● Modular: can analyze each method independently

● Can be implemented as a type system, abstract

interpretation, dataflow analysis, etc.

62

Implementation: aliasing

● Accumulation is sound without aliasing information

● But it might not be precise: false positives

63

Implementation: aliasing

● Accumulation is sound without aliasing information

● But it might not be precise: false positives

64

Prune false positives using cheap, local
alias analysis

Accumulation analysis: example

65

“Before using an
object of type T, set
the f and g fields.”

Accumulation analysis: example

66

“Before using an
object of type T, set
the f and g fields.”

T t = …;
t.f = …;
t.g = …;

use(t);

Accumulation analysis: example

67

“Before using an
object of type T, set
the f and g fields.”

T t = …;
t.f = …;
t.g = …;

use(t);

[]

Initialized Fields

Accumulation analysis: example

68

“Before using an
object of type T, set
the f and g fields.”

T t = …;
t.f = …;
t.g = …;

use(t);

[]
[f]

Initialized Fields

Accumulation analysis: example

69

“Before using an
object of type T, set
the f and g fields.”

T t = …;
t.f = …;
t.g = …;

use(t);

[]
[f]
[f,g]

Initialized Fields

Accumulation analysis: example

70

“Before using an
object of type T, set
the f and g fields.”

T t = …;
t.f = …;
t.g = …;

use(t);

Initialized Fields

[]
[f]
[f,g]

71

Accumulation for initialization

set f set g

*

set f
set g

use X

use

use

Kellogg, Ran, Sridharan, Schaef, Ernst. Verifying Object Construction. ICSE 2020.

“Before using an
object of type T, set
the f and g fields.”

Accumulation for initialization

72

“Before using an
object of type T, set
the f and g fields.”

T t = …;
t.f = …;
t.g = …;

use(t);

Kellogg, Ran, Sridharan, Schaef, Ernst. Verifying Object Construction. ICSE 2020.

Initialized Fields

[]
[f]
[f,g]

Accumulation: evaluation overview

● Initialization (ICSE 2020)

○ User study with real engineers
○ Detection & prevention of machine-image sniping

security vulnerabilities
● Detection & prevention of resource leaks (ESEC/FSE 2021)

73

Accumulation for initialization: user study

Task: add a new required field to a builder
Control: existing tests only
Treatment: accumulation analysis + existing tests

Design: factorial with 2 tasks/subject, randomized order and condition
Subjects: 6 professional software engineers

74

Accumulation for initialization: user study

Task: add a new required field to a builder
Control: existing tests only
Treatment: accumulation analysis + existing tests

Design: factorial with 2 tasks/subject, randomized order and condition
Subjects: 6 professional software engineers

Results:
● +50% success rate

● ~50% faster

75

Accumulation for initialization: security

● Security vulnerabilities: machine image sniping

76

What is a machine image?

77

cloud computer

What is a machine image?

78

cloud computer

What software to run?

What is a machine image?

79

cloud computer

What software to run?

“machine image”

How to choose a machine image:

Look it up in a repository.

● By unique id:
aws ec2 describe-images --imageIds ami-5731123e

● By owner and name:
 aws ec2 describe-images --owners myOrg \
 --filters "Name=myName,Values=ubuntu16.04-*"

● By name alone:
 aws ec2 describe-images \
 --filters "Name=myName,Values=ubuntu16.04-*"

80

How to choose a machine image:

Look it up in a repository.

● By unique id:
aws ec2 describe-images --imageIds ami-5731123e

● By owner and name:
 aws ec2 describe-images --owners myOrg \
 --filters "Name=myName,Values=ubuntu16.04-*"

● By name alone:
 aws ec2 describe-images \
 --filters "Name=myName,Values=ubuntu16.04-*"

81

How to choose a machine image:

Look it up in a repository.

● By unique id:
aws ec2 describe-images --imageIds ami-5731123e

● By owner and name:
 aws ec2 describe-images --owners myOrg \
 --filters "Name=myName,Values=ubuntu16.04-*"

● By name alone:
 aws ec2 describe-images \
 --filters "Name=myName,Values=ubuntu16.04-*"

82

How to choose a machine image:

Look it up in a repository.

● By unique id:
aws ec2 describe-images --imageIds ami-5731123e

● By owner and name:
 aws ec2 describe-images --owners myOrg \
 --filters "Name=myName,Values=ubuntu16.04-*"

● By name alone:
 aws ec2 describe-images \
 --filters "Name=myName,Values=ubuntu16.04-*"

83X

Unsafe client

84

Unsafe client

85

Unsafe client

DescribeImagesRequest request = new DescribeImagesRequest();
request.withFilters(new Filter("myName", "RHEL-7.5_HVM_GA"));

api.describeImages(request);

86

Unsafe client

DescribeImagesRequest request = new DescribeImagesRequest();
request.withFilters(new Filter("myName", "RHEL-7.5_HVM_GA"));

api.describeImages(request);

87

Unsafe: returns all
images with that name
from public repo!

How to make this client safe?

DescribeImagesRequest request = new DescribeImagesRequest();
request.withFilters(new Filter("myName", "RHEL-7.5_HVM_GA"));

api.describeImages(request);

88

How to make this client safe?

DescribeImagesRequest request = new DescribeImagesRequest();
request.withFilters(new Filter("myName", "RHEL-7.5_HVM_GA"));
request.withOwners(“myOrg”);
api.describeImages(request);

89

Requirement: call withOwners() or withImageIds()
before calling describeImages()

Experimental results

No. projects 545

Source LoC ~9.1M

True positives 16

False positives 3

Annotations 34

90

Experimental results

No. projects 545

Source LoC ~9.1M

True positives 16

False positives 3

Annotations 34

91

Non-comment,
non-blank

Experimental results

No. projects 545

Source LoC ~9.1M

True positives 16

False positives 3

Annotations 34

92

Real RCE
vulnerabilities

Example: Netflix/SimianArmy

public List<Image> describeImages(String... imageIds) {
DescribeImagesRequest request =

 new DescribeImagesRequest();

if (imageIds != null) {
 request.setImageIds(Arrays.asList(imageIds));

}

DescribeImagesResult result =
 ec2client.describeImages(request);

return result.getImages();
} 93

Accumulation: evaluation overview

● Initialization (ICSE 2020)

○ User study with real engineers
○ Detection & prevention of machine-image sniping

security vulnerabilities
● Detection & prevention of resource leaks (ESEC/FSE 2021)

94

try {

 Socket s = new Socket(address, port);

 ...

 s.close();

} catch (IOException e) {

}

95Kellogg, Shadab, Sridharan, Ernst. Lightweight and Modular Resource Leak Verification. ESEC/FSE 2021.

Accumulation for resource leaks

try {

 Socket s = new Socket(address, port);

 ...

 s.close();

} catch (IOException e) {

}

96

Missing call to close()

Accumulation for resource leaks

Kellogg, Shadab, Sridharan, Ernst. Lightweight and Modular Resource Leak Verification. ESEC/FSE 2021.

97

Accumulation for resource leaks

OPENED

close()
CLOSED

go out of
scope

go out of scope

X

3-stage checker:

1. taint-tracker over-approximates methods that need to be called
2. accumulation under-approximates methods that have been called
3. dataflow analysis compares the two at “going out-of-scope” points

98

Accumulation for resource leaks

99

Recall

RLC (ours)

Eclipse

Grapple

100%

Precision

Eclipse

100%

RLC (ours)

Grapple

Time

Eclipse

RLC (ours)

Grapple

~37 hrs

Accumulation for resource leaks: results

100

Recall

RLC (ours)

Eclipse

Grapple

100%

Precision

Eclipse

100%

RLC (ours)

Grapple

Time

Eclipse

RLC (ours)

Grapple

~37 hrs

Accumulation for resource leaks: results

101

Recall

RLC (ours)

Eclipse

Grapple

100%

Precision

Eclipse

100%

RLC (ours)

Grapple

Time

Eclipse

Grapple ...

1 hr

Accumulation for resource leaks: results

RLC (ours)

Accumulation summary

● Accumulation typestate automata are exactly those

that can be checked without aliasing information
● Accumulation typestate automata include important

problems like resource leaks, security vulnerabilities,

and initialization

● For accumulation typestate problems, an accumulation

analysis is sound, precise, and fast

102

● Array bounds checking without SMT (ISSTA 2018)

● Other verifiers deployed at AWS

● Push-button verification via type inference

● Replacing manual compliance with verification (ASE 2020)

103

Other projects

● Array bounds checking without SMT (ISSTA 2018)

● Other verifiers deployed at AWS

● Push-button verification via type inference

● Replacing manual compliance with verification (ASE 2020)

104

Other projects

Replacing compliance checks with verification

● Certificates that a company follows a ruleset
○ PCI DSS for credit card transactions
○ HIPAA for healthcare information
○ FedRAMP for US government cloud vendors
○ SOC for information security vendors
○ etc.

105Kellogg, Schaef, Tasiran, Ernst. Continuous Compliance. ASE 2020.

Replacing compliance checks with verification

● Certificates that a company follows a ruleset
○ PCI DSS for credit card transactions
○ HIPAA for healthcare information
○ FedRAMP for US government cloud vendors
○ SOC for information security vendors
○ etc.

● State-of-the-practice is manual audits of source code

106Kellogg, Schaef, Tasiran, Ernst. Continuous Compliance. ASE 2020.

Replacing compliance checks with verification

107Kellogg, Schaef, Tasiran, Ernst. Continuous Compliance. ASE 2020.

Developers hate doing this work

● Certificates that a company follows a ruleset
○ PCI DSS for credit card transactions
○ HIPAA for healthcare information
○ FedRAMP for US government cloud vendors
○ SOC for information security vendors
○ etc.

● State-of-the-practice is manual audits of source code

Replacing compliance checks with verification

● Certificates that a company follows a ruleset
○ PCI DSS for credit card transactions
○ HIPAA for healthcare information
○ FedRAMP for US government cloud vendors
○ SOC for information security vendors
○ etc.

● State-of-the-practice is manual audits of source code
● Insight: specialized checkers can replace manual audits

108Kellogg, Schaef, Tasiran, Ernst. Continuous Compliance. ASE 2020.

Replacing compliance checks with verification

● Certificates that a company follows a ruleset
○ PCI DSS for credit card transactions
○ HIPAA for healthcare information
○ FedRAMP for US government cloud vendors
○ SOC for information security vendors
○ etc.

● State-of-the-practice is manual audits of source code
● Insight: specialized checkers can replace manual audits

109Kellogg, Schaef, Tasiran, Ernst. Continuous Compliance. ASE 2020.

Developers love this, because it saves work
Auditors love this, because it reduces human error

Specialized compliance checkers, industry

110

Verified 37,315 pkgs

True pos. 173 pkgs

False pos. 1 pkg

Run on ~76,000,000 NCNB LoC

Specialized compliance checkers, industry

111

Verified 37,315 pkgs

True pos. 173 pkgs

False pos. 1 pkg

Run on ~76,000,000 NCNB LoC
Only 23 handwritten annotations

Specialized compliance checkers, industry

112

Verified 37,315 pkgs

True pos. 173 pkgs

False pos. 1 pkg

Run on ~76,000,000 NCNB LoC

● Auditors accepted output
of checkers as evidence
during a real audit

● Checkers integrated into
build process

Our checkers vs. other approaches

113

Recall

Ours

100%

CrySL

CryptoGuard

Precision

Ours

100%

SpotBugs

Coverity

CrySL

CryptoGuard

SpotBugs

Coverity

● accumulation: 41% of typestates in the scientific

literature since 1999 are accumulation

○ e.g., authorization, connect sockets before send, etc.

○ improved accumulation analysis algorithms

114

Future work: short-term plans

● accumulation: 41% of typestates in the scientific

literature since 1999 are accumulation

○ e.g., authorization, connect sockets before send, etc.

○ improved accumulation analysis algorithms

● compliance verification
○ collaborate with management science or operations

research and with industry

115

Future work: short-term plans

● Verification-by-parts: split apart the codebase by

commits rather than by files, classes, methods, etc.

● Push-button verification: use specification inference

techniques to verify simple properties automatically

● Continued industrial collaboration to find good

problems to work on

116

Future work: long-term vision

Thanks to my fantastic collaborators!

117

...

● My goal: verification for working developers
● My approach: design and build verification systems that

developers can use
○ expressivity: accumulation makes it easier to verify

initialization, resource leaks, etc.

○ convince: compliance shows how verification can fit

into an everyday developer’s workflow

118

Summary

