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Approach #1: make verification technologies more expressive

“find clever ways to solve hard problems using simple techniques”

Approach #2: convince developers to use verification
● find new applications 
● improve the usability 
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This talk: compliance



Talk outline

● Expressivity: accumulation typestate automata

○ theory: what is an accumulation typestate?

○ practice: is accumulation analysis useful?

● Convincing developers: compliance verification
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Typestate analysis

● Classic static program analysis technique

● First proposed by Strom & Yemeni (1986)

● Extensive literature: over 18,000 hits on Google 

Scholar

● Sound typestate analysis is expensive due to aliasing
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Sound typestate requires aliasing information

● A sound typestate analysis must track all aliases to keep 

FSMs in sync
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e.g., Bierhoff et al. 2009, Clark et al. 2013, Rust
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Sound typestate requires aliasing information

● A sound typestate analysis must track all aliases to keep 

FSMs in sync

● Three prior approaches:

1. ignore aliasing and be unsound (e.g., Emmi et al. 2021)

2. restrict aliasing (e.g., via ownership types) 

3. whole-program may-alias analysis (expensive)
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Key question: does typestate analysis 
always need aliasing information?



Insight: aliasing information is only required 
for some typestate automata
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Insight: aliasing information is only required 
for some typestate automata

Which ones?
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Accumulation typestates

accumulation typestate automaton: 

for any error-inducing sequence S = t1, …, ti, 

all subsequences of S that end in ti 

are also error-inducing

40Kellogg, Shadab, Sridharan, Ernst. Accumulation Analysis. Under submission.
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Is it an accumulation typestate automaton?

“only call read() after calling 

open() at least once”
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This is partial verification

for any error-inducing sequence S = t1, …, ti, 

all subsequences of S that end in ti 

are also error-inducing
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Aside: how hard is it to decide if a typestate 
automaton is accumulation?

● As easy as checking DFA equivalence

○ Result due to Higman’s Theorem (1952)

“The subsequence language of any language 
whatsoever over a finite alphabet is regular.”



Accumulation typestates

accumulation typestate automaton: 

for any error-inducing sequence S = t1, …, ti, 

all subsequences of S that end in ti 

are also error-inducing

Key theorem: Accumulation typestates are exactly those 

that can be checked soundly without aliasing information

52



Accumulation typestates

accumulation typestate automaton: 

for any error-inducing sequence S = t1, …, ti, 

all subsequences of S that end in ti 

are also error-inducing

Key theorem: Accumulation typestates are exactly those 

that can be checked soundly without aliasing information

53



Proof intuition

Key theorem: Accumulation typestates are exactly those 

that can be checked soundly without aliasing information

54



Proof intuition

Key theorem: Accumulation typestates are exactly those 

that can be checked soundly without aliasing information

Intuition for ⇒: 
1. without aliasing information, analysis observes a 

subsequence of actual transitions

55



Proof intuition

Key theorem: Accumulation typestates are exactly those 

that can be checked soundly without aliasing information

Intuition for ⇒: 
1. without aliasing information, analysis observes a 

subsequence of actual transitions

2. if analysis observes a transition that leads to an error 

at run time, the final transition must be error-inducing
56



Proof intuition

Key theorem: Accumulation typestates are exactly those 

that can be checked soundly without aliasing information

Intuition for ⇒: 
1. without aliasing information, analysis observes a 

subsequence of actual transitions

2. if analysis observes a transition that leads to an error 

at run time, the final transition must be error-inducing
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for any error-inducing sequence S = t1, …, ti, 

all subsequences of S that end in ti 

are also error-inducing



A brief review

● An accumulation typestate automaton is

closed under error-inducing subsequences 

with the same error-inducing transition

● Accumulation typestate automata are 

exactly those that can be checked 

without aliasing information
● Higman’s theorem is cool
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Measuring success

Goal: every developer uses verification 
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Goal: every developer uses verification 

    “Are the resulting analyses useful & usable for developers?”
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Implementation Evaluation



Implementation: accumulation analysis

● Directly tracks the sequence of transitions each 

variable has observed rather than the FSM

● Modular: can analyze each method independently

● Can be implemented as a type system, abstract 

interpretation, dataflow analysis, etc.
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Implementation: aliasing

● Accumulation is sound without aliasing information

● But it might not be precise: false positives
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Implementation: aliasing

● Accumulation is sound without aliasing information

● But it might not be precise: false positives
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Prune false positives using cheap, local 
alias analysis



Accumulation analysis: example
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“Before using an 
object of type T, set 
the f and g fields.”

T t = …;
t.f = …;
t.g = …;

use(t);

Initialized Fields

[                   ]
[      f          ]
[     f,g     ]
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Accumulation for initialization

set f set g

*

set f
set g

use X

use

use

Kellogg, Ran, Sridharan, Schaef, Ernst. Verifying Object Construction. ICSE 2020.

“Before using an 
object of type T, set 
the f and g fields.”



Accumulation for initialization
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“Before using an 
object of type T, set 
the f and g fields.”

T t = …;
t.f = …;
t.g = …;

use(t);

Kellogg, Ran, Sridharan, Schaef, Ernst. Verifying Object Construction. ICSE 2020.

Initialized Fields

[                   ]
[      f          ]
[     f,g     ]



Accumulation: evaluation overview

● Initialization (ICSE 2020)

○ User study with real engineers
○ Detection & prevention of machine-image sniping 

security vulnerabilities
● Detection & prevention of resource leaks (ESEC/FSE 2021)
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Accumulation for initialization: user study

Task: add a new required field to a builder
Control: existing tests only
Treatment: accumulation analysis + existing tests

Design: factorial with 2 tasks/subject, randomized order and condition
Subjects: 6 professional software engineers
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Accumulation for initialization: user study

Task: add a new required field to a builder
Control: existing tests only
Treatment: accumulation analysis + existing tests

Design: factorial with 2 tasks/subject, randomized order and condition
Subjects: 6 professional software engineers

Results:
● +50% success rate

● ~50% faster
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Accumulation for initialization: security

● Security vulnerabilities: machine image sniping
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What is a machine image?
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cloud computer

What software to run?

“machine image”



How to choose a machine image:

Look it up in a repository.

● By unique id:  
aws ec2 describe-images --imageIds ami-5731123e

● By owner and name: 
 aws ec2 describe-images --owners myOrg \
  --filters "Name=myName,Values=ubuntu16.04-*"

● By name alone:
   aws ec2 describe-images \
  --filters "Name=myName,Values=ubuntu16.04-*"
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How to choose a machine image:

Look it up in a repository.

● By unique id:  
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Unsafe client

DescribeImagesRequest request = new DescribeImagesRequest();
request.withFilters(new Filter("myName", "RHEL-7.5_HVM_GA"));

api.describeImages(request); 
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Unsafe client

DescribeImagesRequest request = new DescribeImagesRequest();
request.withFilters(new Filter("myName", "RHEL-7.5_HVM_GA"));

api.describeImages(request); 
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Unsafe: returns all 
images with that name 
from public repo!



How to make this client safe?

DescribeImagesRequest request = new DescribeImagesRequest();
request.withFilters(new Filter("myName", "RHEL-7.5_HVM_GA"));

api.describeImages(request); 
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How to make this client safe?

DescribeImagesRequest request = new DescribeImagesRequest();
request.withFilters(new Filter("myName", "RHEL-7.5_HVM_GA"));
request.withOwners(“myOrg”);
api.describeImages(request); 
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Requirement: call withOwners() or withImageIds() 
before calling describeImages()



Experimental results

No. projects 545

Source LoC ~9.1M

True positives 16

False positives 3

Annotations 34
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Experimental results

No. projects 545

Source LoC ~9.1M

True positives 16

False positives 3

Annotations 34
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Real RCE 
vulnerabilities



Example: Netflix/SimianArmy

public List<Image> describeImages(String... imageIds) {
DescribeImagesRequest request = 

            new DescribeImagesRequest(); 

if (imageIds != null) {
    request.setImageIds(Arrays.asList(imageIds)); 

}

DescribeImagesResult result = 
            ec2client.describeImages(request);

return result.getImages();
} 93



Accumulation: evaluation overview

● Initialization (ICSE 2020)

○ User study with real engineers
○ Detection & prevention of machine-image sniping 

security vulnerabilities
● Detection & prevention of resource leaks (ESEC/FSE 2021)
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try {

   Socket s = new Socket(address, port);

   ...

   s.close();

} catch (IOException e) {

}

95Kellogg, Shadab, Sridharan, Ernst. Lightweight and Modular Resource Leak Verification. ESEC/FSE 2021.

Accumulation for resource leaks



try {

   Socket s = new Socket(address, port);

   ...

   s.close();

} catch (IOException e) {

}

96

Missing call to close()

Accumulation for resource leaks

Kellogg, Shadab, Sridharan, Ernst. Lightweight and Modular Resource Leak Verification. ESEC/FSE 2021.
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Accumulation for resource leaks

OPENED

close()
CLOSED

go out of 
scope

go out of scope

X



3-stage checker:

1. taint-tracker over-approximates methods that need to be called
2. accumulation under-approximates methods that have been called
3. dataflow analysis compares the two at “going out-of-scope” points 

98

Accumulation for resource leaks



99

Recall

RLC (ours)

Eclipse

Grapple

100%

Precision

Eclipse

100%

RLC (ours)

Grapple

Time

Eclipse

RLC (ours)

Grapple

~37 hrs

Accumulation for resource leaks: results



100

Recall

RLC (ours)

Eclipse

Grapple

100%

Precision

Eclipse

100%

RLC (ours)

Grapple

Time

Eclipse

RLC (ours)

Grapple

~37 hrs

Accumulation for resource leaks: results



101

Recall

RLC (ours)

Eclipse

Grapple

100%

Precision

Eclipse

100%

RLC (ours)

Grapple

Time

Eclipse

Grapple                                        ...

1 hr

Accumulation for resource leaks: results

RLC (ours)



Accumulation summary

● Accumulation typestate automata are exactly those 

that can be checked without aliasing information
● Accumulation typestate automata include important 

problems like resource leaks, security vulnerabilities, 

and initialization

● For accumulation typestate problems, an accumulation 

analysis is sound, precise, and fast
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● Array bounds checking without SMT (ISSTA 2018)

● Other verifiers deployed at AWS

● Push-button verification via type inference

● Replacing manual compliance with verification (ASE 2020)
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Replacing compliance checks with verification

● Certificates that a company follows a ruleset
○ PCI DSS for credit card transactions
○ HIPAA for healthcare information
○ FedRAMP for US government cloud vendors
○ SOC for information security vendors
○ etc.

105Kellogg, Schaef, Tasiran, Ernst. Continuous Compliance. ASE 2020.
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Replacing compliance checks with verification

● Certificates that a company follows a ruleset
○ PCI DSS for credit card transactions
○ HIPAA for healthcare information
○ FedRAMP for US government cloud vendors
○ SOC for information security vendors
○ etc.

● State-of-the-practice is manual audits of source code
● Insight: specialized checkers can replace manual audits

109Kellogg, Schaef, Tasiran, Ernst. Continuous Compliance. ASE 2020.

Developers love this, because it saves work
Auditors love this, because it reduces human error



Specialized compliance checkers, industry
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Specialized compliance checkers, industry
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Verified 37,315 pkgs

True pos. 173 pkgs

False pos. 1 pkg

Run on ~76,000,000 NCNB LoC

● Auditors accepted output 
of checkers as evidence 
during a real audit

● Checkers integrated into 
build process



Our checkers vs. other approaches
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Recall

Ours

100%

CrySL

CryptoGuard

Precision

Ours

100%

SpotBugs

Coverity

CrySL

CryptoGuard

SpotBugs

Coverity



● accumulation: 41% of typestates in the scientific 

literature since 1999 are accumulation

○ e.g., authorization, connect sockets before send, etc.

○ improved accumulation analysis algorithms
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● accumulation: 41% of typestates in the scientific 

literature since 1999 are accumulation

○ e.g., authorization, connect sockets before send, etc.

○ improved accumulation analysis algorithms

● compliance verification
○ collaborate with management science or operations 

research and with industry

115

Future work: short-term plans



● Verification-by-parts: split apart the codebase by 

commits rather than by files, classes, methods, etc.

● Push-button verification: use specification inference 

techniques to verify simple properties automatically

● Continued industrial collaboration to find good 

problems to work on

116

Future work: long-term vision



Thanks to my fantastic collaborators!
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...



● My goal: verification for working developers
● My approach: design and build verification systems that 

developers can use
○ expressivity: accumulation makes it easier to verify 

initialization, resource leaks, etc.

○ convince: compliance shows how verification can fit 

into an everyday developer’s workflow 
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Summary


