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High-level Problem: Specifying Legacy Code

● Verification is the only way to guarantee correctness
○ “Testing shows the presence of bugs, not their absence”

● To scale to real programs, many verifiers are modular
○ Downside: humans must write specifications

■ Hard for legacy code
● Pluggable typecheckers extend a host type system

○ Prior work has introduced type inference techniques to try 
to solve this problem
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Our Goal Today: A Fair Comparison

● Three high-level research questions:
○ What’s the right methodology to compare inference tools?
○ Which extant tool is the state-of-the-art?
○ What opportunities for improving the state-of-the-art exist?

● Talk outline:
○ Background on the problem and prior work
○ Methodology issue: bias in type reconstruction experiments

■ Caused by how humans annotate code
○ A fair comparison, using an improved methodology
○ Discussion of how the state-of-the-art can improve 13
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● Attractive to developers
○ Familiar, high precision, sound, fast checking, modular, …

● Downside: manual annotation of legacy codebases
○ This is the problem that we’re targeting today

● Recent work has proposed 3 new type inference techniques:
○ Checker Framework Whole-Program Inference (ASE 2023)
○ NullAway Annotator (FSE 2023)
○ NullGTN (arxiv 2024) 23

Next: a brief introduction to 
these three extant tools
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Background: CF WPI (ASE 2023)
● Most pluggable typecheckers already implement local type 

inference within method bodies
○ Reduces user effort: no annotations on local variables
○ Implemented as intra-procedural dataflow analysis
○ Typically implemented at the framework level

● Key idea: iteratively run local inference and propagate results
○ Advantage: works with any typechecker built on a framework 

“for free” (no per-typechecker code required)
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● CF WPI implementation is the only one that supports multiple 
different pluggable type systems
○ Others claim they should generalize, but it’s not evaluated

● Only NullGTN can possibly annotate entrypoint parameters
○ (Assuming no test cases)
○ In WPI’s evaluation, this was the largest cause of missed 

human-written annotations (11%)
● All three tools were evaluated separately

○ 2/3 (WPI, NullGTN) use “type reconstruction” experiments
■ NullAway Annotator evaluation lacks ground truth 44
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● Recall our motivation: we want to use inference to annotate 
never-annotated programs
○ But type reconstruction benchmarks aren’t “never-annotated”

■ In fact, they differ in important ways!
● Intuition: programmers change semantics as they annotate

○ E.g., add null checks, work around false positives
● These changes could simplify inference

○ We can check this empirically
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Type Reconstruction Experiments: Biased!

Results:
● We could identify before and after versions of 10 benchmarks

○ ~36k LoC
● 286 changes during annotation
● These changes made checking easier (fewer warnings)...
● …and made inference easier (more warning reduction)

Conclusion: developers make changes beyond just writing annotations 
when “annotating”
● Cannot fairly evaluate inference tools on pre-annotated code 67
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● NullAway Annotator evaluation used warning reduction
○ Problem: warning reduction doesn’t tell the whole story

■ For example, correct annotations could add new warnings 
by revealing real bugs!

● To fairly compare all three tools, we combined warning reduction 
with manual inspection of different annotation choices
○ Same set of never-annotated standard benchmarks
○ Definition for manual evaluation: a declaration should be 

marked as @Nullable if there exists a read of it that may observe 
a null value 71
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● Each number represents 

the number of times that 

the tool handles a 

disagreement correctly

● Overall conclusion: 

Annotator makes the 

fewest mistakes, but it 

doesn’t strictly dominate 

the other tools
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Direct Comparison: Discussion

● Annotator makes the fewest mistakes and has the highest error 
reduction, but is still far from perfect
○ Both other tools sometimes are the only correct tool

● WPI is hampered by internal consistency
○ Inherits dataflow imprecision from the typechecker

■ Causes errors to cascade
● NullGTN overgeneralizes

○ We also observed that it handles “poorly-written” code 
especially badly
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● Since developers make changes while annotating, why don’t 
inference tools?
○ E.g., integrate refactoring or automated program repair 

(APR) tools with inference?
● Even for “simple” pluggable type systems like nullability, 

state-of-the-art is disappointing
○ Lots of room for improvement

● Can we combine the strengths of different tools? E.g.:
○ Use NullGTN only for entrypoint parameters?
○ Could warning fitness stop imprecision cascades in WPI? 84
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● Benchmark: NJR-1 dataset [1]
○ 255 Java programs, ~1.4 million LoC

● Two proxies for quality:
○ Manual analysis of 300 sampled disagreements
○ Warning reduction
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NullGTN is 
consistently 
worst

higher is better


