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High-level Problem: Specifying Legacy Code

e Verificationis the only way to
o “Testing shows the presence of bugs, not their absence”
e Toscaletoreal programs, many verifiers are modular
o Downside: humans must write specifications
m Hard for legacy code
e Pluggable typecheckers extend a host type system
o Prior work has introduced type inference techniques to try
to solve this problem
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Our Goal Today: A Fair Comparison

e Three high-level research questions:

O

O

O

What's the right methodology to compare inference tools?
Which extant tool is the ?
What the state-of-the-art exist?

e Talkoutline:

O

O

Background on the problem and prior work

Methodology issue: bias in type reconstruction experiments

m Caused by how humans annotate code

A fair comparison, using an improved methodology

Discussion of how the state-of-the-art can improve &
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Background: CF WPI (ASE 2023)

e Most pluggable typecheckers already implement local type
inference within method bodies
o Reduces user effort: no annotations on local variables
o Implemented as intra-procedural
o Typically implemented at the framework level
e Key idea: iteratively runlocal inference and propagate results
o Advantage: works with any typechecker built on a framework
“for free” (no per-typechecker code required)
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Background: NullAway Annotator (FSE 2023)

Key idea: use warnings from the checker as a fitness function for

annotations
Iterative, bounded-depth search for annotation set that

o W.ith some optimizations to reduce the search space

Only implementation is for NullAway (FSE ‘19, developed at Uber)
o Only infers eNullable annotations
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e Graph-based deep learning model
o Inspired by recent success of similar ML-based techniques for

inferring Python and TypeScript type annotations
e Key idea: place annotations like a human would
e Trained on ~32k classes with at least one enul1able annotation

from GitHub
o Datafrom many sources: checkers, documentation, etc.

e Onlyinfersenullable
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Key Differences

o CF WPl implementation is the only one that supports multiple
different pluggable type systems
o Others claim they should generalize, but it’s not evaluated
e Only NullGTN can possibly annotate entrypoint parameters
o (Assuming no test cases)
o InWPI’s evaluation, this was the largest cause of missed
human-written annotations (11%)
e Allthree tools were evaluated separately
o 2/3 (WPI, NullGTN) use “type reconstruction” experiments
m NullAway Annotator evaluation lacks ground truth 4
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Methodology:

Collect benchmarks previously annotated by humans
Remove annotations
Run inference

inference results to human-written annotations

-
Major advantage: have ground truth:

the human-written annotations
\_
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e Recall our motivation: we want to use inference to annotate
never-annotated programs
o Buttype reconstruction benchmarks aren’t “never-annotated”
m [Infact, they differ in important ways!
e Intuition: programmers change semantics as they annotate
o E.g.,add null checks, work around false positives
e These changes could simplify inference
o We can check this empirically

54



Type Reconstruction Experiments: Biased!

Methodology:

55



Type Reconstruction Experiments: Biased!

Methodology:
e Collect before and after versions of human-annotated benchmarks
o Viaper-project historical investigation of git history

56



Type Reconstruction Experiments: Biased!

Methodology:

e Collect before and after versions of human-annotated benchmarks
o Viaper-project historical investigation of git history

e Manually categorize changes

57



Type Reconstruction Experiments: Biased!

Methodology:

e Collect before and after versions of human-annotated benchmarks
o Viaper-project historical investigation of git history

e Manually categorize changes

° on both version and compare results
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Type Reconstruction Experiments: Biased!

Results:

e Wecouldif

O

~36k L

Category #Modifications
Null checks 81
Call to Objects.requireNonNull 13
Field initialization 23
Mark fields as final 31
Modify method signatures 17
Use this. X instead of X in constructors 17
Define new methods or constructors 20
Adjust method arguments 7
Modify return values 6
Modify field types 6
Others 65
Total 286

enchmarks
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Type Reconstruction Experiments: Biased!

Average of all #Errors of Pre version #Errors of Post version Reduction %
benchmarks after inference after inference

WPI + CFNullness 125 119 ~ 5%

WPI + Nullaway 37 32 ~14%
Annotator + CFNullness 67 63 ~ 6%
Annotator + Nullaway 9 4 ~56%
NullGTN + CFNullness 134 126 ~ 6%
NullGTN + Nullaway 61 56 ~ 8%

e ..and made inference easier (more warning reduction)
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Results:

e We could identify before and after versions of 10 benchmarks
o ~36kLoC

° during annotation

e These changes made checking easier (fewer warnings)...

e ..and made inference easier (more warning reduction)

Conclusion: developers make changes beyond just writing annotations
when “annotating”
e Cannot fairly evaluate inference tools on pre-annotated code o7
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Alternative Experimental Design

e NullAway Annotator evaluation used warning reduction

o Problem: warning reduction doesn'’t tell the whole story

m For example, correct annotations could
by revealing real bugs!

e To fairly compare all three tools, we combined warning reduction

with manual inspection of different annotation choices

o Same set of never-annotated standard benchmarks

o Definition for manual evaluation: a declaration should be

marked as enullable if there exists a read of it that may observe
a null value n
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correct
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the tool handles a
disagreement correctly
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22

And for 78 disagreements,
both WPI and Annotator are
correct (and NullGTN is
wrong)

75



Direct Comparison: Manual Analysis

e Each number represents
the number of times that
the tool handles a
disagreement correctly

e Overall conclusion:
Annotator makes the
fewest mistakes, but it
doesn’t strictly dominate
the other tools

NullGTN
22
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Direct Comparison: Discussion

e Annotator makes the fewest mistakes and has the highest error
reduction, but is still far from perfect
o Both other tools sometimes are the only correct tool
e WHPIis hampered by internal consistency
o Inherits dataflow imprecision from the typechecker
m Causeserrorsto cascade
e NullGTN overgeneralizes
o We also observed that it handles “poorly-written” code
especially badly
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Future Work

e Since developers make changes while annotating, why don’t
inference tools?
o E.g.,integrate refactoring or automated program repair
(APR) tools with inference?
e Evenfor “simple” pluggable type systems like nullability,
state-of-the-art is disappointing
o Lots of
e Canwe combine the strengths of different tools? E.g.:
o Use NullGTN only for entrypoint parameters?
o Could stop imprecision cascades in WPI? 84
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e Inferenceis a promising way to help developers adopt pluggable
type systems, by
e Previous evaluations overstated effectiveness of inference,
because of biased type reconstruction experiments
o Developers change their code while annotating!
e Of the extant nullability inference tools, NullAway Annotator
produces marginally better results than the others
o Butno tool strictly dominates, and all tools sometimes do
better, so there’s lots of room for improvement
o Future work in inference should include refactoring/APR o
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Direct Comparison

e Benchmark: NJR-1 dataset [1]
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Direct Comparison

e Benchmark: NJR-1 dataset [1]
o 255 Javaprograms, ~1.4 million LoC

e Two proxies for quality:
o Manual analysis of 300 sampled disagreements
o Warning reduction
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Direct Comparison: Warning Reduction
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Direct Comparison: Warning Reduction
L0os ~ - WPI has a wide range
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