
A New Approach to Evaluating
Nullability Inference Tools

Nima Karimipour*1, Erfan Arvan*2,
Martin Kellogg2, Manu Sridharan1

* Equal contribution
1University of California, Riverside

2New Jersey Institute of Technology

1

High-level Problem: Specifying Legacy Code

● Verification is the only way to guarantee correctness
○ “Testing shows the presence of bugs, not their absence”

2

High-level Problem: Specifying Legacy Code

● Verification is the only way to guarantee correctness
○ “Testing shows the presence of bugs, not their absence”

● To scale to real programs, many verifiers are modular
○ Downside: humans must write specifications

■ Hard for legacy code

3

High-level Problem: Specifying Legacy Code

● Verification is the only way to guarantee correctness
○ “Testing shows the presence of bugs, not their absence”

● To scale to real programs, many verifiers are modular
○ Downside: humans must write specifications

■ Hard for legacy code
● Pluggable typecheckers extend a host type system

4

High-level Problem: Specifying Legacy Code

● Verification is the only way to guarantee correctness
○ “Testing shows the presence of bugs, not their absence”

● To scale to real programs, many verifiers are modular
○ Downside: humans must write specifications

■ Hard for legacy code
● Pluggable typecheckers extend a host type system

○ Prior work has introduced type inference techniques to try
to solve this problem

5

Our Goal Today: A Fair Comparison

● Three high-level research questions:

6

Our Goal Today: A Fair Comparison

● Three high-level research questions:
○ What’s the right methodology to compare inference tools?

7

Our Goal Today: A Fair Comparison

● Three high-level research questions:
○ What’s the right methodology to compare inference tools?
○ Which extant tool is the state-of-the-art?

8

Our Goal Today: A Fair Comparison

● Three high-level research questions:
○ What’s the right methodology to compare inference tools?
○ Which extant tool is the state-of-the-art?
○ What opportunities for improving the state-of-the-art exist?

9

Our Goal Today: A Fair Comparison

● Three high-level research questions:
○ What’s the right methodology to compare inference tools?
○ Which extant tool is the state-of-the-art?
○ What opportunities for improving the state-of-the-art exist?

● Talk outline:
○ Background on the problem and prior work

10

Our Goal Today: A Fair Comparison

● Three high-level research questions:
○ What’s the right methodology to compare inference tools?
○ Which extant tool is the state-of-the-art?
○ What opportunities for improving the state-of-the-art exist?

● Talk outline:
○ Background on the problem and prior work
○ Methodology issue: bias in type reconstruction experiments

■ Caused by how humans annotate code

11

Our Goal Today: A Fair Comparison

● Three high-level research questions:
○ What’s the right methodology to compare inference tools?
○ Which extant tool is the state-of-the-art?
○ What opportunities for improving the state-of-the-art exist?

● Talk outline:
○ Background on the problem and prior work
○ Methodology issue: bias in type reconstruction experiments

■ Caused by how humans annotate code
○ A fair comparison, using an improved methodology

12

Our Goal Today: A Fair Comparison

● Three high-level research questions:
○ What’s the right methodology to compare inference tools?
○ Which extant tool is the state-of-the-art?
○ What opportunities for improving the state-of-the-art exist?

● Talk outline:
○ Background on the problem and prior work
○ Methodology issue: bias in type reconstruction experiments

■ Caused by how humans annotate code
○ A fair comparison, using an improved methodology
○ Discussion of how the state-of-the-art can improve 13

Background: Pluggable Types

 @Positive int x

14

Background: Pluggable Types

15

 @Positive int x

Background: Pluggable Types

16

 @Even int x

Background: Pluggable Types

17

 @Nullable Object x

Background: Pluggable Types

● Widely adopted
○ Uber, Meta, AWS, Google, Oracle, etc.

18

Background: Pluggable Types

● Widely adopted
○ Uber, Meta, AWS, Google, Oracle, etc.

● Attractive to developers
○ Familiar, high precision, sound, fast checking, modular, …

19

Background: Pluggable Types

● Widely adopted
○ Uber, Meta, AWS, Google, Oracle, etc.

● Attractive to developers
○ Familiar, high precision, sound, fast checking, modular, …

● Downside: manual annotation of legacy codebases

20

Background: Pluggable Types

● Widely adopted
○ Uber, Meta, AWS, Google, Oracle, etc.

● Attractive to developers
○ Familiar, high precision, sound, fast checking, modular, …

● Downside: manual annotation of legacy codebases
○ This is the problem that we’re targeting today

21

Background: Pluggable Types

● Widely adopted
○ Uber, Meta, AWS, Google, Oracle, etc.

● Attractive to developers
○ Familiar, high precision, sound, fast checking, modular, …

● Downside: manual annotation of legacy codebases
○ This is the problem that we’re targeting today

● Recent work has proposed 3 new type inference techniques:
○ Checker Framework Whole-Program Inference (ASE 2023)
○ NullAway Annotator (FSE 2023)
○ NullGTN (arxiv 2024) 22

Background: Pluggable Types

● Widely adopted
○ Uber, Meta, AWS, Google, Oracle, etc.

● Attractive to developers
○ Familiar, high precision, sound, fast checking, modular, …

● Downside: manual annotation of legacy codebases
○ This is the problem that we’re targeting today

● Recent work has proposed 3 new type inference techniques:
○ Checker Framework Whole-Program Inference (ASE 2023)
○ NullAway Annotator (FSE 2023)
○ NullGTN (arxiv 2024) 23

Next: a brief introduction to
these three extant tools

Background: CF WPI (ASE 2023)

24

Background: CF WPI (ASE 2023)
● Most pluggable typecheckers already implement local type

inference within method bodies

25
Martin Kellogg, Daniel Daskiewicz, Loi Ngo Duc Nguyen, Muyeed Ahmed, Michael D. Ernst. Pluggable Type Inference for Free. In ASE 2023.
.

Background: CF WPI (ASE 2023)
● Most pluggable typecheckers already implement local type

inference within method bodies
○ Reduces user effort: no annotations on local variables

26
Martin Kellogg, Daniel Daskiewicz, Loi Ngo Duc Nguyen, Muyeed Ahmed, Michael D. Ernst. Pluggable Type Inference for Free. In ASE 2023.
.

Background: CF WPI (ASE 2023)
● Most pluggable typecheckers already implement local type

inference within method bodies
○ Reduces user effort: no annotations on local variables
○ Implemented as intra-procedural dataflow analysis

27
Martin Kellogg, Daniel Daskiewicz, Loi Ngo Duc Nguyen, Muyeed Ahmed, Michael D. Ernst. Pluggable Type Inference for Free. In ASE 2023.
.

Background: CF WPI (ASE 2023)
● Most pluggable typecheckers already implement local type

inference within method bodies
○ Reduces user effort: no annotations on local variables
○ Implemented as intra-procedural dataflow analysis
○ Typically implemented at the framework level

28
Martin Kellogg, Daniel Daskiewicz, Loi Ngo Duc Nguyen, Muyeed Ahmed, Michael D. Ernst. Pluggable Type Inference for Free. In ASE 2023.
.

Background: CF WPI (ASE 2023)
● Most pluggable typecheckers already implement local type

inference within method bodies
○ Reduces user effort: no annotations on local variables
○ Implemented as intra-procedural dataflow analysis
○ Typically implemented at the framework level

● Key idea: iteratively run local inference and propagate results

29
Martin Kellogg, Daniel Daskiewicz, Loi Ngo Duc Nguyen, Muyeed Ahmed, Michael D. Ernst. Pluggable Type Inference for Free. In ASE 2023.
.

Background: CF WPI (ASE 2023)
● Most pluggable typecheckers already implement local type

inference within method bodies
○ Reduces user effort: no annotations on local variables
○ Implemented as intra-procedural dataflow analysis
○ Typically implemented at the framework level

● Key idea: iteratively run local inference and propagate results
○ Advantage: works with any typechecker built on a framework

“for free” (no per-typechecker code required)

30
Martin Kellogg, Daniel Daskiewicz, Loi Ngo Duc Nguyen, Muyeed Ahmed, Michael D. Ernst. Pluggable Type Inference for Free. In ASE 2023.
.

Nima Karimipour, Justin Pham, Lazaro Clapp, and Manu Sridharan. Practical Inference of Nullability Types. In ESEC/FSE 2023.
.

Background: NullAway Annotator (FSE 2023)

● Key idea: use warnings from the checker as a fitness function for
annotations

31

Nima Karimipour, Justin Pham, Lazaro Clapp, and Manu Sridharan. Practical Inference of Nullability Types. In ESEC/FSE 2023.
.

Background: NullAway Annotator (FSE 2023)

● Key idea: use warnings from the checker as a fitness function for
annotations

● Iterative, bounded-depth search for annotation set that minimizes
checker warnings
○ With some optimizations to reduce the search space

32

Nima Karimipour, Justin Pham, Lazaro Clapp, and Manu Sridharan. Practical Inference of Nullability Types. In ESEC/FSE 2023.
.

Background: NullAway Annotator (FSE 2023)

● Key idea: use warnings from the checker as a fitness function for
annotations

● Iterative, bounded-depth search for annotation set that minimizes
checker warnings
○ With some optimizations to reduce the search space

● Only implementation is for NullAway (FSE ‘19, developed at Uber)

33

Nima Karimipour, Justin Pham, Lazaro Clapp, and Manu Sridharan. Practical Inference of Nullability Types. In ESEC/FSE 2023.
.

Background: NullAway Annotator (FSE 2023)

● Key idea: use warnings from the checker as a fitness function for
annotations

● Iterative, bounded-depth search for annotation set that minimizes
checker warnings
○ With some optimizations to reduce the search space

● Only implementation is for NullAway (FSE ‘19, developed at Uber)
○ Only infers @Nullable annotations

34

Kazi Amanul Islam Siddiqui and Martin Kellogg. Inferring Pluggable Types with Machine Learning. https://arxiv.org/abs/2406.15676

.

Background: NullGTN (arxiv 2024)

● Graph-based deep learning model

35

Kazi Amanul Islam Siddiqui and Martin Kellogg. Inferring Pluggable Types with Machine Learning. https://arxiv.org/abs/2406.15676

.

Background: NullGTN (arxiv 2024)

● Graph-based deep learning model
○ Inspired by recent success of similar ML-based techniques for

inferring Python and TypeScript type annotations

36

Kazi Amanul Islam Siddiqui and Martin Kellogg. Inferring Pluggable Types with Machine Learning. https://arxiv.org/abs/2406.15676

.

Background: NullGTN (arxiv 2024)

● Graph-based deep learning model
○ Inspired by recent success of similar ML-based techniques for

inferring Python and TypeScript type annotations
● Key idea: place annotations like a human would

37

Kazi Amanul Islam Siddiqui and Martin Kellogg. Inferring Pluggable Types with Machine Learning. https://arxiv.org/abs/2406.15676

.

Background: NullGTN (arxiv 2024)

● Graph-based deep learning model
○ Inspired by recent success of similar ML-based techniques for

inferring Python and TypeScript type annotations
● Key idea: place annotations like a human would
● Trained on ~32k classes with at least one @Nullable annotation

from GitHub
○ Data from many sources: checkers, documentation, etc.

38

Kazi Amanul Islam Siddiqui and Martin Kellogg. Inferring Pluggable Types with Machine Learning. https://arxiv.org/abs/2406.15676

.

Background: NullGTN (arxiv 2024)

● Graph-based deep learning model
○ Inspired by recent success of similar ML-based techniques for

inferring Python and TypeScript type annotations
● Key idea: place annotations like a human would
● Trained on ~32k classes with at least one @Nullable annotation

from GitHub
○ Data from many sources: checkers, documentation, etc.

● Only infers @Nullable

39

Key Differences

40

Key Differences

● CF WPI implementation is the only one that supports multiple
different pluggable type systems
○ Others claim they should generalize, but it’s not evaluated

41

Key Differences

● CF WPI implementation is the only one that supports multiple
different pluggable type systems
○ Others claim they should generalize, but it’s not evaluated

42

Implication: comparison has to be focused
on nullability type systems, for now

Key Differences

● CF WPI implementation is the only one that supports multiple
different pluggable type systems
○ Others claim they should generalize, but it’s not evaluated

● Only NullGTN can possibly annotate entrypoint parameters
○ (Assuming no test cases)
○ In WPI’s evaluation, this was the largest cause of missed

human-written annotations (11%)

43

Key Differences

● CF WPI implementation is the only one that supports multiple
different pluggable type systems
○ Others claim they should generalize, but it’s not evaluated

● Only NullGTN can possibly annotate entrypoint parameters
○ (Assuming no test cases)
○ In WPI’s evaluation, this was the largest cause of missed

human-written annotations (11%)
● All three tools were evaluated separately

○ 2/3 (WPI, NullGTN) use “type reconstruction” experiments
■ NullAway Annotator evaluation lacks ground truth 44

Type Reconstruction Experiments

Methodology:

45

Type Reconstruction Experiments

Methodology:
● Collect benchmarks previously annotated by humans

46

Type Reconstruction Experiments

Methodology:
● Collect benchmarks previously annotated by humans
● Remove annotations

47

Type Reconstruction Experiments

Methodology:
● Collect benchmarks previously annotated by humans
● Remove annotations
● Run inference

48

Type Reconstruction Experiments

Methodology:
● Collect benchmarks previously annotated by humans
● Remove annotations
● Run inference
● Compare inference results to human-written annotations

49

Type Reconstruction Experiments

Methodology:
● Collect benchmarks previously annotated by humans
● Remove annotations
● Run inference
● Compare inference results to human-written annotations

50

Major advantage: have ground truth:
the human-written annotations

Type Reconstruction Experiments: Biased!

● Recall our motivation: we want to use inference to annotate
never-annotated programs

51

Type Reconstruction Experiments: Biased!

● Recall our motivation: we want to use inference to annotate
never-annotated programs
○ But type reconstruction benchmarks aren’t “never-annotated”

■ In fact, they differ in important ways!

52

Type Reconstruction Experiments: Biased!

● Recall our motivation: we want to use inference to annotate
never-annotated programs
○ But type reconstruction benchmarks aren’t “never-annotated”

■ In fact, they differ in important ways!
● Intuition: programmers change semantics as they annotate

○ E.g., add null checks, work around false positives

53

Type Reconstruction Experiments: Biased!

● Recall our motivation: we want to use inference to annotate
never-annotated programs
○ But type reconstruction benchmarks aren’t “never-annotated”

■ In fact, they differ in important ways!
● Intuition: programmers change semantics as they annotate

○ E.g., add null checks, work around false positives
● These changes could simplify inference

○ We can check this empirically

54

Type Reconstruction Experiments: Biased!

Methodology:

55

Type Reconstruction Experiments: Biased!

Methodology:
● Collect before and after versions of human-annotated benchmarks

○ Via per-project historical investigation of git history

56

Type Reconstruction Experiments: Biased!

Methodology:
● Collect before and after versions of human-annotated benchmarks

○ Via per-project historical investigation of git history
● Manually categorize changes

57

Type Reconstruction Experiments: Biased!

Methodology:
● Collect before and after versions of human-annotated benchmarks

○ Via per-project historical investigation of git history
● Manually categorize changes
● Run inference on both version and compare results

58

Type Reconstruction Experiments: Biased!

Results:
● We could identify before and after versions of 10 benchmarks

○ ~36k LoC

59

Type Reconstruction Experiments: Biased!

Results:
● We could identify before and after versions of 10 benchmarks

○ ~36k LoC
● 286 changes during annotation

60

Type Reconstruction Experiments: Biased!

Results:
● We could identify before and after versions of 10 benchmarks

○ ~36k LoC
● 286 changes during annotation

61

Type Reconstruction Experiments: Biased!

Results:
● We could identify before and after versions of 10 benchmarks

○ ~36k LoC
● 286 changes during annotation
● These changes made checking easier (fewer warnings)

62

Type Reconstruction Experiments: Biased!

Results:
● We could identify before and after versions of 10 benchmarks

○ ~36k LoC
● 286 changes during annotation
● These changes made checking easier (fewer warnings)...

63

Type Reconstruction Experiments: Biased!

Results:
● We could identify before and after versions of 10 benchmarks

○ ~36k LoC
● 286 changes during annotation
● These changes made checking easier (fewer warnings)...
● …and made inference easier (more warning reduction)

64

Type Reconstruction Experiments: Biased!

Results:
● we could identify before and after versions of 10 benchmarks

○ ~36k LoC
● 286 non-semantics preserving changes during annotation
● these changes made checking easier (fewer warnings)
● …and made inference easier (more warning reduction)

65

Type Reconstruction Experiments: Biased!

Results:
● We could identify before and after versions of 10 benchmarks

○ ~36k LoC
● 286 changes during annotation
● These changes made checking easier (fewer warnings)...
● …and made inference easier (more warning reduction)

Conclusion: developers make changes beyond just writing annotations
when “annotating”

66

Type Reconstruction Experiments: Biased!

Results:
● We could identify before and after versions of 10 benchmarks

○ ~36k LoC
● 286 changes during annotation
● These changes made checking easier (fewer warnings)...
● …and made inference easier (more warning reduction)

Conclusion: developers make changes beyond just writing annotations
when “annotating”
● Cannot fairly evaluate inference tools on pre-annotated code 67

Alternative Experimental Design

● NullAway Annotator evaluation used warning reduction

68

Alternative Experimental Design

● NullAway Annotator evaluation used warning reduction
○ Problem: warning reduction doesn’t tell the whole story

■ For example, correct annotations could add new warnings
by revealing real bugs!

69

Alternative Experimental Design

● NullAway Annotator evaluation used warning reduction
○ Problem: warning reduction doesn’t tell the whole story

■ For example, correct annotations could add new warnings
by revealing real bugs!

● To fairly compare all three tools, we combined warning reduction
with manual inspection of different annotation choices
○ Same set of never-annotated standard benchmarks

70

Alternative Experimental Design

● NullAway Annotator evaluation used warning reduction
○ Problem: warning reduction doesn’t tell the whole story

■ For example, correct annotations could add new warnings
by revealing real bugs!

● To fairly compare all three tools, we combined warning reduction
with manual inspection of different annotation choices
○ Same set of never-annotated standard benchmarks
○ Definition for manual evaluation: a declaration should be

marked as @Nullable if there exists a read of it that may observe
a null value 71

Direct Comparison: Manual Analysis

72

Direct Comparison: Manual Analysis

● Each number represents

the number of times that

the tool handles a

disagreement correctly

73

Direct Comparison: Manual Analysis

74

● Each number represents

the number of times that

the tool handles a

disagreement correctly

E.g., for 71 disagreements

only NullAway Annotator is

correct

Direct Comparison: Manual Analysis

75

● Each number represents

the number of times that

the tool handles a

disagreement correctly

And for 78 disagreements,

both WPI and Annotator are

correct (and NullGTN is

wrong)

Direct Comparison: Manual Analysis

76

● Each number represents

the number of times that

the tool handles a

disagreement correctly

● Overall conclusion:

Annotator makes the

fewest mistakes, but it

doesn’t strictly dominate

the other tools

Direct Comparison: Discussion

77

Direct Comparison: Discussion

● Annotator makes the fewest mistakes and has the highest error
reduction, but is still far from perfect
○ Both other tools sometimes are the only correct tool

78

Direct Comparison: Discussion

● Annotator makes the fewest mistakes and has the highest error
reduction, but is still far from perfect
○ Both other tools sometimes are the only correct tool

● WPI is hampered by internal consistency
○ Inherits dataflow imprecision from the typechecker

■ Causes errors to cascade

79

Direct Comparison: Discussion

● Annotator makes the fewest mistakes and has the highest error
reduction, but is still far from perfect
○ Both other tools sometimes are the only correct tool

● WPI is hampered by internal consistency
○ Inherits dataflow imprecision from the typechecker

■ Causes errors to cascade
● NullGTN overgeneralizes

○ We also observed that it handles “poorly-written” code
especially badly

80

Future Work

81

Future Work

● Since developers make changes while annotating, why don’t
inference tools?
○ E.g., integrate refactoring or automated program repair

(APR) tools with inference?

82

Future Work

● Since developers make changes while annotating, why don’t
inference tools?
○ E.g., integrate refactoring or automated program repair

(APR) tools with inference?
● Even for “simple” pluggable type systems like nullability,

state-of-the-art is disappointing
○ Lots of room for improvement

83

Future Work

● Since developers make changes while annotating, why don’t
inference tools?
○ E.g., integrate refactoring or automated program repair

(APR) tools with inference?
● Even for “simple” pluggable type systems like nullability,

state-of-the-art is disappointing
○ Lots of room for improvement

● Can we combine the strengths of different tools? E.g.:
○ Use NullGTN only for entrypoint parameters?
○ Could warning fitness stop imprecision cascades in WPI? 84

Summary: Pluggable Type Inference

85

● Inference is a promising way to help developers adopt pluggable
type systems, by automating the annotation burden

86

Summary: Pluggable Type Inference

● Inference is a promising way to help developers adopt pluggable
type systems, by automating the annotation burden

● Previous evaluations overstated effectiveness of inference,
because of biased type reconstruction experiments
○ Developers change their code while annotating!

87

Summary: Pluggable Type Inference

● Inference is a promising way to help developers adopt pluggable
type systems, by automating the annotation burden

● Previous evaluations overstated effectiveness of inference,
because of biased type reconstruction experiments
○ Developers change their code while annotating!

● Of the extant nullability inference tools, NullAway Annotator
produces marginally better results than the others

88

Summary: Pluggable Type Inference

● Inference is a promising way to help developers adopt pluggable
type systems, by automating the annotation burden

● Previous evaluations overstated effectiveness of inference,
because of biased type reconstruction experiments
○ Developers change their code while annotating!

● Of the extant nullability inference tools, NullAway Annotator
produces marginally better results than the others
○ But no tool strictly dominates, and all tools sometimes do

better, so there’s lots of room for improvement
89

Summary: Pluggable Type Inference

● Inference is a promising way to help developers adopt pluggable
type systems, by automating the annotation burden

● Previous evaluations overstated effectiveness of inference,
because of biased type reconstruction experiments
○ Developers change their code while annotating!

● Of the extant nullability inference tools, NullAway Annotator
produces marginally better results than the others
○ But no tool strictly dominates, and all tools sometimes do

better, so there’s lots of room for improvement
○ Future work in inference should include refactoring/APR 90

Summary: Pluggable Type Inference

Summary: Pluggable Type Inference

● Inference is a promising way to help developers adopt pluggable
type systems, by automating the annotation burden

● Previous evaluations overstated effectiveness of inference,
because of biased type reconstruction experiments
○ Developers change their code while annotating!

● Of the extant nullability inference tools, NullAway Annotator
produces marginally better results than the others
○ But no tool strictly dominates, and all tools sometimes do

better, so there’s lots of room for improvement
○ Future work in inference should include refactoring/APR 91

Thanks to my co-authors: Erfan Arvan,
Nima Karimipour, and Manu Sridharan

92

93

Direct Comparison

● Benchmark: NJR-1 dataset [1]
○ 255 Java programs, ~1.4 million LoC

94
[1] Akshay Utture, Christian Gram Kalhauge, Shuyang Liu, and Jens Palsberg. 2020. NJR-1 dataset. https://zenodo.org/records/8015477.

Direct Comparison

● Benchmark: NJR-1 dataset [1]
○ 255 Java programs, ~1.4 million LoC

● Two proxies for quality:
○ Manual analysis of 300 sampled disagreements
○ Warning reduction

95
[1] Akshay Utture, Christian Gram Kalhauge, Shuyang Liu, and Jens Palsberg. 2020. NJR-1 dataset. https://zenodo.org/records/8015477.

Direct Comparison: Warning Reduction

96

higher is better

Direct Comparison: Warning Reduction

97

Annotator is best

higher is better

Direct Comparison: Warning Reduction

98

WPI has a wide range

higher is better

Direct Comparison: Warning Reduction

99

NullGTN is
consistently
worst

higher is better

