A New Approach to Evaluating
Nullability Inference Tools

Nima Karimipour %, Erfan Arvan?,
Martin Kellogg? Manu Sridharan?

* Equal contribution
lUniversity of California, Riverside
’New Jersey Institute of Technology

High-level Problem: Specifying Legacy Code

e Verificationis the only way to
o “Testing shows the presence of bugs, not their absence”

High-level Problem: Specifying Legacy Code

e Verificationis the only way to
o “Testing shows the presence of bugs, not their absence”
e Toscaletoreal programs, many verifiers are modular
o Downside: humans must write specifications
m Hard for legacy code

High-level Problem: Specifying Legacy Code

e \Verification is the only way to guarantee correctness
o “Testing shows the presence of bugs, not their absence”
e Toscaletoreal programs, many verifiers are modular
o Downside: humans must write specifications
m Hard for legacy code
e Pluggable typecheckers extend a host type system

High-level Problem: Specifying Legacy Code

e Verificationis the only way to
o “Testing shows the presence of bugs, not their absence”
e Toscaletoreal programs, many verifiers are modular
o Downside: humans must write specifications
m Hard for legacy code
e Pluggable typecheckers extend a host type system
o Prior work has introduced type inference techniques to try
to solve this problem

Our Goal Today: A Fair Comparison

e Three high-level research questions:

Our Goal Today: A Fair Comparison

e Three high-level research questions:
o What's the right methodology to compare inference tools?

Our Goal Today: A Fair Comparison

e Three high-level research questions:
o What's the right methodology to compare inference tools?
o Which extant tool is the ?

Our Goal Today: A Fair Comparison

e Three high-level research questions:
o What's the right methodology to compare inference tools?
o Which extant tool is the ?
o What the state-of-the-art exist?

Our Goal Today: A Fair Comparison

e Three high-level research questions:

o What's the right methodology to compare inference tools?

o Which extant tool is the ?

o What the state-of-the-art exist?
e Talk outline:

o Background on the problem and prior work

10

Our Goal Today: A Fair Comparison

e Three high-level research questions:

o What's the right methodology to compare inference tools?

o Which extant tool is the ?

o What the state-of-the-art exist?
e Talk outline:

o Background on the problem and prior work

o Methodology issue: bias in type reconstruction experiments

m Caused by how humans annotate code

11

Our Goal Today: A Fair Comparison

e Three high-level research questions:

o What's the right methodology to compare inference tools?

o Which extant tool is the ?

o What the state-of-the-art exist?
e Talk outline:

o Background on the problem and prior work

o Methodology issue: bias in type reconstruction experiments

m Caused by how humans annotate code
o Afair comparison, using an improved methodology

12

Our Goal Today: A Fair Comparison

e Three high-level research questions:

O

O

O

What's the right methodology to compare inference tools?
Which extant tool is the ?
What the state-of-the-art exist?

e Talkoutline:

O

O

Background on the problem and prior work

Methodology issue: bias in type reconstruction experiments

m Caused by how humans annotate code

A fair comparison, using an improved methodology

Discussion of how the state-of-the-art can improve &

Background: Pluggable Types

int x

Background: Pluggable Types

@QPositive int x

15

Background: Pluggable Types

@Even int x

16

Background: Pluggable Types

@Nullable Object x

17

Background: Pluggable Types

o Uber, Meta, AWS, Google, Oracle, etc.

18

Background: Pluggable Types

o
o Uber, Meta, AWS, Google, Oracle, etc.
e Attractive to developers
o Familiar, high precision, sound, fast checking, modular, ...

19

Background: Pluggable Types

o

o Uber, Meta, AWS, Google, Oracle, etc.
e Attractive to developers

o Familiar, high precision, sound, fast checking, modular, ...
e Downside: manual annotation of legacy codebases

20

Background: Pluggable Types

e Widely adopted
o Uber, Meta, AWS, Google, Oracle, etc.
e Attractive to developers

o Familiar, high precision, sound, fast checking, modular, ...

e Downside: manual annotation of legacy codebases
o Thisisthe problem that we're targeting today

21

Background: Pluggable Types

o
o Uber, Meta, AWS, Google, Oracle, etc.
e Attractive to developers
o Familiar, high precision, sound, fast checking, modular, ...
e Downside: manual annotation of legacy codebases
o Thisisthe problem that we're targeting today
e Recent work has proposed 3 new type inference techniques:
o Checker Framework Whole-Program Inference (ASE 2023)
o NullAway Annotator (FSE 2023)
o NullGTN (arxiv 2024)

22

Background: Pluggable Types

o Uber, Meta, AWS, Google, Oracle, etc.
e Attractive to developers

o Familiar, high preci¢* — ..
r;[Next: a brief introduction to]

e Downside: manual an
.. h h tant tool
o Thisisthe proble these three ei(anuoos

e Recent work has proposed 3 new type inference techniques:
o Checker Framework Whole-Program Inference (ASE 2023)
o NullAway Annotator (FSE 2023)
o NullGTN (arxiv 2024)

23

Background: CF WPI (ASE 2023)

Background: CF WPI (ASE 2023)

e Most pluggable typecheckers already implement local type
inference within method bodies

25

Background: CF WPI (ASE 2023)

e Most pluggable typecheckers already implement local type
inference within method bodies
o Reduces user effort: no annotations on local variables

26

Background: CF WPI (ASE 2023)

e Most pluggable typecheckers already implement local type
inference within method bodies
o Reduces user effort: no annotations on local variables
o Implemented as intra-procedural

27

Background: CF WPI (ASE 2023)

e Most pluggable typecheckers already implement local type
inference within method bodies
o Reduces user effort: no annotations on local variables
o Implemented as intra-procedural
o Typically implemented at the framework level

28

Background: CF WPI (ASE 2023)

e Most pluggable typecheckers already implement local type
inference within method bodies
o Reduces user effort: no annotations on local variables
o Implemented as intra-procedural
o Typically implemented at the framework level
e Key idea: iteratively runlocal inference and propagate results

29

Background: CF WPI (ASE 2023)

e Most pluggable typecheckers already implement local type
inference within method bodies
o Reduces user effort: no annotations on local variables
o Implemented as intra-procedural
o Typically implemented at the framework level
e Key idea: iteratively runlocal inference and propagate results
o Advantage: works with any typechecker built on a framework
“for free” (no per-typechecker code required)

30

Background: NullAway Annotator (FSE 2023)

e Key idea: use warnings from the checker as a fitness function for
annotations

31

Background: NullAway Annotator (FSE 2023)

e Key idea: use warnings from the checker as a fitness function for
annotations
e [terative, bounded-depth search for annotation set that

o W.ith some optimizations to reduce the search space

32

Background: NullAway Annotator (FSE 2023)

Key idea: use warnings from the checker as a fitness function for

annotations
Iterative, bounded-depth search for annotation set that

o W.ith some optimizations to reduce the search space
Only implementation is for NullAway (FSE ‘19, developed at Uber)

33

Background: NullAway Annotator (FSE 2023)

Key idea: use warnings from the checker as a fitness function for

annotations
Iterative, bounded-depth search for annotation set that

o W.ith some optimizations to reduce the search space

Only implementation is for NullAway (FSE ‘19, developed at Uber)
o Only infers eNullable annotations

34

Background: NullGTN (arxiv 2024)

e Graph-based deep learning model

35

Background: NullGTN (arxiv 2024)

e Graph-based deep learning model
o Inspired by recent success of similar ML-based techniques for
inferring Python and TypeScript type annotations

36

Background: NullGTN (arxiv 2024)

e Graph-based deep learning model
o Inspired by recent success of similar ML-based techniques for
inferring Python and TypeScript type annotations
e Key idea: place annotations like a human would

37

Background: NullGTN (arxiv 2024)

e Graph-based deep learning model
o Inspired by recent success of similar ML-based techniques for
inferring Python and TypeScript type annotations
e Key idea: place annotations like a human would
e Trained on ~32k classes with at least one exul1able annotation
from GitHub
o Datafrom many sources: checkers, documentation, etc.

38

Background: NullGTN (arxiv 2024)

e Graph-based deep learning model
o Inspired by recent success of similar ML-based techniques for

inferring Python and TypeScript type annotations
e Key idea: place annotations like a human would
e Trained on ~32k classes with at least one enul1able annotation

from GitHub
o Datafrom many sources: checkers, documentation, etc.

e Onlyinfersenullable

39

Key Differences

Key Differences

e CF WPl implementation is the only one that supports multiple
different pluggable type systems
o Others claim they should generalize, but it’s not evaluated

41

. Implication: comparison has to be focused
Key Differenc on nullability type systems, for now

]

e CF WPl implementation is the only one that supports multiple
different pluggable type systems
o Others claim they should generalize, but it’s not evaluated

42

Key Differences

o CF WPl implementation is the only one that supports multiple
different pluggable type systems
o Others claim they should generalize, but it’s not evaluated
e Only NullGTN can possibly annotate entrypoint parameters
o (Assuming no test cases)
o InWPI’s evaluation, this was the largest cause of missed
human-written annotations (11%)

43

Key Differences

o CF WPl implementation is the only one that supports multiple
different pluggable type systems
o Others claim they should generalize, but it’s not evaluated
e Only NullGTN can possibly annotate entrypoint parameters
o (Assuming no test cases)
o InWPI’s evaluation, this was the largest cause of missed
human-written annotations (11%)
e Allthree tools were evaluated separately
o 2/3 (WPI, NullGTN) use “type reconstruction” experiments
m NullAway Annotator evaluation lacks ground truth 4

Type Reconstruction Experiments

Methodology:

45

Type Reconstruction Experiments

Methodology:
e Collect benchmarks previously annotated by humans

46

Type Reconstruction Experiments

Methodology:
e Collect benchmarks previously annotated by humans
e Remove annotations

47

Type Reconstruction Experiments

Methodology:

e Collect benchmarks previously annotated by humans
e Remove annotations

e Runinference

48

Type Reconstruction Experiments

Methodology:

Collect benchmarks previously annotated by humans
Remove annotations
Run inference

Compare inference results to human-written annotations

49

Type Reconstruction Experiments

Methodology:

Collect benchmarks previously annotated by humans
Remove annotations
Run inference

inference results to human-written annotations

-
Major advantage: have ground truth:

the human-written annotations
_

50

Type Reconstruction Experiments: Biased!

e Recall our motivation: we want to use inference to annotate
never-annotated programs

51

Type Reconstruction Experiments: Biased!

e Recall our motivation: we want to use inference to annotate
never-annotated programs
o Buttype reconstruction benchmarks aren’t “never-annotated”
m [Infact, they differ in important ways!

52

Type Reconstruction Experiments: Biased!

e Recall our motivation: we want to use inference to annotate
never-annotated programs
o Buttype reconstruction benchmarks aren’t “never-annotated”
m [Infact, they differ in important ways!
e Intuition: programmers change semantics as they annotate
o E.g.,add null checks, work around false positives

53

Type Reconstruction Experiments: Biased!

e Recall our motivation: we want to use inference to annotate
never-annotated programs
o Buttype reconstruction benchmarks aren’t “never-annotated”
m [Infact, they differ in important ways!
e Intuition: programmers change semantics as they annotate
o E.g.,add null checks, work around false positives
e These changes could simplify inference
o We can check this empirically

54

Type Reconstruction Experiments: Biased!

Methodology:

55

Type Reconstruction Experiments: Biased!

Methodology:
e Collect before and after versions of human-annotated benchmarks
o Viaper-project historical investigation of git history

56

Type Reconstruction Experiments: Biased!

Methodology:

e Collect before and after versions of human-annotated benchmarks
o Viaper-project historical investigation of git history

e Manually categorize changes

57

Type Reconstruction Experiments: Biased!

Methodology:

e Collect before and after versions of human-annotated benchmarks
o Viaper-project historical investigation of git history

e Manually categorize changes

° on both version and compare results

58

Type Reconstruction Experiments: Biased!

Results:

e We could identify before and after versions of 10 benchmarks
o ~36kLoC

59

Type Reconstruction Experiments: Biased!

Results:
e We could identify before and after versions of 10 benchmarks

o ~36kLoC
° during annotation

60

Type Reconstruction Experiments: Biased!

Results:

e Wecouldif

O

~36k L

Category #Modifications
Null checks 81
Call to Objects.requireNonNull 13
Field initialization 23
Mark fields as final 31
Modify method signatures 17
Use this. X instead of X in constructors 17
Define new methods or constructors 20
Adjust method arguments 7
Modify return values 6
Modify field types 6
Others 65
Total 286

enchmarks

61

Type Reconstruction Experiments: Biased!

Results:

e We could identify before and after versions of 10 benchmarks
o ~36kLoC

° during annotation

e These changes made checking easier (fewer warnings)

62

Type Reconstruction Experiments: Biased!

Results:

e We could identify before and after versions of 10 benchmarks
o ~36kLoC

° during annotation
e These changes made checking easier (fewer warnings)...

Average of all #Errors of Pre version #Errors of Post version Reduction %
benchmarks before inference before inference
Average -CFNullness 88.3 79.6 ~10%

Average-Nullaway 34.7 31.7 ~ 9%

Type Reconstruction Experiments: Biased!

Results:

e We could identify before and after versions of 10 benchmarks
o ~36kLoC

° during annotation

e These changes made checking easier (fewer warnings)...

e ..and made inference easier (more warning reduction)

64

Type Reconstruction Experiments: Biased!

Average of all #Errors of Pre version #Errors of Post version Reduction %
benchmarks after inference after inference

WPI + CFNullness 125 119 ~ 5%

WPI + Nullaway 37 32 ~14%
Annotator + CFNullness 67 63 ~ 6%
Annotator + Nullaway 9 4 ~56%
NullGTN + CFNullness 134 126 ~ 6%
NullGTN + Nullaway 61 56 ~ 8%

e ..and made inference easier (more warning reduction)

65

Type Reconstruction Experiments: Biased!

Results:

e We could identify before and after versions of 10 benchmarks
o ~36kLoC

° during annotation

e These changes made checking easier (fewer warnings)...

e ..and made inference easier (more warning reduction)

Conclusion: developers make changes beyond just writing annotations
when “annotating”

66

Type Reconstruction Experiments: Biased!

Results:

e We could identify before and after versions of 10 benchmarks
o ~36kLoC

° during annotation

e These changes made checking easier (fewer warnings)...

e ..and made inference easier (more warning reduction)

Conclusion: developers make changes beyond just writing annotations
when “annotating”
e Cannot fairly evaluate inference tools on pre-annotated code o7

Alternative Experimental Design

e NullAway Annotator evaluation used warning reduction

68

Alternative Experimental Design

e NullAway Annotator evaluation used warning reduction
o Problem: warning reduction doesn'’t tell the whole story
m For example, correct annotations could
by revealing real bugs!

69

Alternative Experimental Design

e NullAway Annotator evaluation used warning reduction
o Problem: warning reduction doesn'’t tell the whole story
m For example, correct annotations could
by revealing real bugs!
e To fairly compare all three tools, we combined warning reduction
with manual inspection of different annotation choices
o Same set of never-annotated standard benchmarks

70

Alternative Experimental Design

e NullAway Annotator evaluation used warning reduction

o Problem: warning reduction doesn'’t tell the whole story

m For example, correct annotations could
by revealing real bugs!

e To fairly compare all three tools, we combined warning reduction

with manual inspection of different annotation choices

o Same set of never-annotated standard benchmarks

o Definition for manual evaluation: a declaration should be

marked as enullable if there exists a read of it that may observe
a null value n

Direct Comparison: Manual Analysis

NullGTN
22

72

Direct Comparison: Manual Analysis

e Each number represents
the number of times that
the tool handles a
disagreement correctly

NullGTN
22

73

Direct Comparison: Manual Analysis

e Each number represents
the number of times that
the tool handles a
disagreement correctly

NullGTN
22

E.g., for 71 disagreements
only NullAway Annotator is

correct

74

Direct Comparison: Manual Analysis

e Each number represents
the number of times that
the tool handles a
disagreement correctly

NullGTN
22

And for 78 disagreements,
both WPI and Annotator are
correct (and NullGTN is
wrong)

75

Direct Comparison: Manual Analysis

e Each number represents
the number of times that
the tool handles a
disagreement correctly

e Overall conclusion:
Annotator makes the
fewest mistakes, but it
doesn’t strictly dominate
the other tools

NullGTN
22

Direct Comparison: Discussion

77

Direct Comparison: Discussion

e Annotator makes the fewest mistakes and has the highest error
reduction, but is still far from perfect
o Both other tools sometimes are the only correct tool

78

Direct Comparison: Discussion

e Annotator makes the fewest mistakes and has the highest error
reduction, but is still far from perfect
o Both other tools sometimes are the only correct tool
e WHPIis hampered by internal consistency
o Inherits dataflow imprecision from the typechecker
m Causeserrorsto cascade

79

Direct Comparison: Discussion

e Annotator makes the fewest mistakes and has the highest error
reduction, but is still far from perfect
o Both other tools sometimes are the only correct tool
e WHPIis hampered by internal consistency
o Inherits dataflow imprecision from the typechecker
m Causeserrorsto cascade
e NullGTN overgeneralizes
o We also observed that it handles “poorly-written” code
especially badly

80

Future Work

81

Future Work

e Since developers make changes while annotating, why don’t
inference tools?
o E.g.,integrate refactoring or automated program repair
(APR) tools with inference?

82

Future Work

e Since developers make changes while annotating, why don’t
inference tools?
o E.g.,integrate refactoring or automated program repair
(APR) tools with inference?
e Evenfor “simple” pluggable type systems like nullability,
state-of-the-art is disappointing
o Lots of

83

Future Work

e Since developers make changes while annotating, why don’t
inference tools?
o E.g.,integrate refactoring or automated program repair
(APR) tools with inference?
e Evenfor “simple” pluggable type systems like nullability,
state-of-the-art is disappointing
o Lots of
e Canwe combine the strengths of different tools? E.g.:
o Use NullGTN only for entrypoint parameters?
o Could stop imprecision cascades in WPI? 84

Summary: Pluggable Type Inference

85

Summary: Pluggable Type Inference

e Inferenceis a promising way to help developers adopt pluggable
type systems, by

86

Summary: Pluggable Type Inference

e Inferenceis a promising way to help developers adopt pluggable
type systems, by
e Previous evaluations overstated effectiveness of inference,
because of biased type reconstruction experiments
o Developers change their code while annotating!

87

Summary: Pluggable Type Inference

e Inferenceis a promising way to help developers adopt pluggable
type systems, by
e Previous evaluations overstated effectiveness of inference,
because of biased type reconstruction experiments
o Developers change their code while annotating!
e Of the extant nullability inference tools, NullAway Annotator
produces marginally better results than the others

88

Summary: Pluggable Type Inference

e Inferenceis a promising way to help developers adopt pluggable
type systems, by
e Previous evaluations overstated effectiveness of inference,
because of biased type reconstruction experiments
o Developers change their code while annotating!
e Of the extant nullability inference tools, NullAway Annotator
produces marginally better results than the others
o Butno tool strictly dominates, and all tools sometimes do
better, so there’s lots of room for improvement

89

Summary: Pluggable Type Inference

e Inferenceis a promising way to help developers adopt pluggable
type systems, by
e Previous evaluations overstated effectiveness of inference,
because of biased type reconstruction experiments
o Developers change their code while annotating!
e Of the extant nullability inference tools, NullAway Annotator
produces marginally better results than the others
o Butno tool strictly dominates, and all tools sometimes do
better, so there’s lots of room for improvement
o Future work in inference should include refactoring/APR

90

. Thanks to my co-authors: Erfan Arvan,
SummarY- Plug Nima Karimipour, and Manu Sridharan

e Inferenceis a promising way to help developers adopt pluggable
type systems, by
e Previous evaluations overstated effectiveness of inference,
because of biased type reconstruction experiments
o Developers change their code while annotating!
e Of the extant nullability inference tools, NullAway Annotator
produces marginally better results than the others
o Butno tool strictly dominates, and all tools sometimes do
better, so there’s lots of room for improvement
o Future work in inference should include refactoring/APR o

92

93

Direct Comparison

e Benchmark: NJR-1 dataset [1]
o 255 Javaprograms, ~1.4 million LoC

94

Direct Comparison

e Benchmark: NJR-1 dataset [1]
o 255 Javaprograms, ~1.4 million LoC

e Two proxies for quality:
o Manual analysis of 300 sampled disagreements
o Warning reduction

95

Direct Comparison: Warning Reduction

100% |
. '
1% A

0% -
-1% A

'10% 7 [o)

-100% A °

higher is better © *s\ -é*
~1000% - °© -
o
o

Percentage of error reduction

[0 () D)

(0]
o

ANN-NW ANN-CF WPI-NW WPI-CF NGT-NW NGT-CF

Direct Comparison: Warning Reduction

o - Annotator is best
100% r— \ — —

10% A

1% -
%l —+—
-1% 4

0% o

-100% A o

higher is better = *s\ -é*
. -
(0]
(@]
o

Percentage of error reduction

[0 () D)

-1000% A

W\IN-NW ANN-Cy WPI-NW WPI-CF NGT-NW NGT-CF

Direct Comparison: Warning Reduction
L0os ~ - WPI has a wide range
00% — ' / : — =
g -100% - 'g'
higher is better & :
g) -1000% A o ‘é ‘g

ANN-NW ANN-CF QVPI-NW WPI-Cy NGT-NW NGT-CF

Direct Com

100%

narison: Warning Reduction

10% A

1% -
0% A
1% -

-10% A

-100% A

Percentage of error reduction

higher is better

-1000% A

o
©
e
6 =
o o
o o
o
ANN-NW ANN-CF WPI-NW WPI-CF \NGTNW NGT-CF

NullGTN is
consistently
worst

99

