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‘success in checking the

consistency of the specifications
and the code will depend on... the
complexity and style in which the
code and specifications are written”

- OpenJML manual
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But how do we know that this is true?

Our goal: in the literature with an empirical study
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Does it matter?

e Anempirical study’s results must be
e S0, what are the implications if our hypothesis is correct?
e Our hypothesis:
o “There s a correlation between code that is hard to
verify and code that is hard for humans to understand.”
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]

e Forthe of verification tools:
o we are giving good advice to our users (yay!)
o error messages should suggest semantically-equivalent code
that would verify (new research direction!)
e For the users of verification tools:
o refactor to avoid warnings

Auxiliary benefit of verification:
points to hard-to-understand code
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e Forthe of verification tools:
o we are giving good advice to our users (yay!)
o error messages should suggest semantically-equivalent code
that would verify (new research direction!)
e For the users of verification tools:
o refactor to avoid warnings
e for :
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20



“There is a correlation between code that is hard to
| m p I icat | ons verify and code that is hard for humans to understand.”

]

e Forthe of verification tools:
o we are giving good advice to our users (yay!)
o error messages should suggest semantically-equivalent code
that would verify (new research direction!)
e For the users of verification tools:
o refactor to avoid warnings
o For .
o thereis asemantic component to human code understanding
o explains ineffectiveness of traditional, syntactic metrics like
cyclomatic complexity
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Empirical study design

“There is a correlation between code that is hard to

verify and code that is hard for humans to understand.”
-

~

J

e Problem: neither of these are easy to measure directly
o must use proxies
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Proxy for verifiability

Warnings on code snippets
e “unannotated” = “no specifications”

o butstill trying to prove e.g., absence of buffer overflows
e ‘“correct” sothat no warnings correspond to real bugs

o thatis, all warnings are false positives
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Choosing verifiers

e We selected four “verifiers”:

CHECKER

framework

&9 OpenJML

G Infer

Java Typestate Checker
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Choosing verifiers

e We selected four “verifiers”:

ug ECKER %

All tools have sound cores: internally, they try
to construct a proof (= “do verification”).

kvpe TV Java—rypesraTE'Urreéker

1

JML
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Proxy for understandability

Metrics for understandability from prior work
e thisisa decision: don’t run another human study!
o butstudies in the literature don’t use the same set of metrics
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Prior studies

e we used 6 prior studies
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Prior studies: descriptive stats

| 4 s 1 12

Table 1: Datasets (DSs) of code snippets and understandability measurements/metrics used in our study. The metrics types are
“C” for correctness, “R” for ratings, “T” for time, and “P” for physiological.

DS Snippets NCLOC Participants Understandability Task Understandability Metrics Meas.
: correct_output_rating (3-level correctness score for program output)

: output_difficulty (5-level difficulty score for determining program output) 2,829
time_to_give_output (seconds to read program and answer a question)
brain_deact_31ant (deactivation of brain area BA31ant)
brain_deact_31post (deactivation of brain area BA31post)

1[81] 23 CSalgorithms 6-20 41 students Determine prog. output

2 [70] 12 CS algorithms 7-15 16 students Determine prog. output brain_deact 32 (deactivation of brain area BA32) 228
time_to_understand (seconds to understand program within 60 secs.)

3 [16] 100 OSS methods 5-13 121students  Rate prog. readability : readability_level (5-level score for readability/ease to understand) 12,100
binary_understandability (0/1 program understandability score)

6 [77] 50 OSS methods 18 -75 50 students and Rate underst./answer Qs correct_verif _questions (% of correct answers to verification questions) 1,197

13 developers time_to_understand (seconds to understand program)

gap_accuracy (0/1 accuracy score for filling in program blanks)

9[14] 100SSmethods 10-34 104students Rate read./complete prog. : readability_level_ba (5-level avg. score for readability b/a code completion) 2.600

: readability_level_before (5-level score for readability before code completion)
time_to_read_complete (avg. seconds to rate readability and complete code)
brain_deact_31(deactivation of brain area BA31)

brain_deact_32 (deactivation of brain area BA32)

: complexity_level (score for program complexity) 631
: perc_correct_output (% of subjects who correctly gave program output)

: time_to_understand (seconds to understand program within 60 seconds)

F[68] 16 CS algorithms 7-19 19 students Determine prog. output
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Table 1: Datasets (DSs) of code snippets and understandability measurements/metrics used in our study. The metrics types are
“C” for correctness, “R” for ratings, “T” for time, and “P” for physiological.
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Prior studies: metrics

e we used 6 prior studies

° metrics:

4 correctness (e.g., “% answering a question correctly”)

6 rating (e.g., “readability level”)

5 time (e.g., “time to read program and answer a question”)
5 (e.g., brain area deactivation via fMRI)

O O O O
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Meta-analysis

e itis notobvious how to combine these metrics
e tempting but wrong idea: measure correlation for each metric
independently, then count correlations
o astatistical error! (“vote counting”):
m overweights studies with more metrics
m doesn’t take into account effect sizes
e instead, use random-effects meta-analysis
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Meta-analysis

e itis notobvious how to combine these metrics
e tempting but wrong idea: measure correlation for each metric
independently, then count correlations
o astatistical error! (“vote counting”):
m overweights studies with more metrics
m doesn’t take into account effect sizes
e instead, use
o technique for combining medical studies on different
populations and proxies
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Unit-of-analysis problem

e meta-analysis combines independent correlations into a single,

N
t .
aggregate ¢ Brute force is safe, but throws away the

© however ponefit of multiple metrics per study

m cach Y,
e in meta-analysis, this is the“ "
o an (1) in statistical methods research

m we tried some cutting-edge statistical techniques, but
their (strong) assumptions weren't satisfied
m instead, use brute force: combine all metrics for each
study into one correlation 60
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Results: overall

Dataset Number of Snippets Weights Estimate [95% CI]
1 23 — 14.84% -0.52[-0.77, -0.14]
2 12 —_— 7.88% -0.43 [-0.80, 0.20]
3 100 —— 34.87% -0.22 [-0.40, —0.03]
6 50 —— 25.40% 0.03 [-0.25, 0.30]
9 10 . : 6.33% 0.04 [-0.60, 0.66]
f 16 — 10.68% —0.36 [-0.73, 0.16]
RE Model ’ 100.00% -0.23 [-0.46, 0.03]

Test for Heterogeneity: Q = 6.80, df =5, p =0.24

| I T i I |
-0.91 046 0 046 076

Pearson's r (negative correlation supports our hypothesis)

p =0.07
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Results: overall

overall correlation
of r=0.23 (small

effect size)

Dataset Number of Snippets Weights Estimate [95% CI]
1 23 —— 14.84% -0.52[-0.77, -0.14]
2 12 l—-—‘—o 7.88% -0.43[-0.80, 0.20]
3 100 »—l—- 34.87% -0.22 [-0.40, -0.03]
6 50 r—l—« 25.40% 0.03 [-0.25, 0.30]
9 10 L 6.33% 0.04 [-0.60, 0.66]
f 16 r—-——4 10.68% -0.36 [-0.73, 0.16]
RE Model | ’- | r100.00% -0.23[-0.46, 0.03]
‘Test for Heterogeneity: Q = 6.80, df =5, p =0.24 : L p =0.07
[ [ I | I |
-0.91 -046 0 046 0.76

Pearson's r (negative correlation supports our hypothesis)
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Results: overall

Dataset Number of Snippets Weights Estimate [95% CI]

o) 1 23 — 14.84% -0.52 [-0.77, -0.14]
95% confidence

° ° ° 2 12 '—-—'—i 7.88% -0.43[-0.80, 0.20]
interval is wide ;

3 100 — 34.87% -0.22[-0.40, -0.03]

[-0.46,0.03], but
most of it supports
our hypothesis f y

50 - 25.40% 0.03 [-0.25, 0.30]

6.33% 0.04 [-0.60, 0.66]

10.68% -0.36 [-0.73, 0.16]

RE Model 43 [-0.46, 0.03]

Test for Heterogeneity: Q = 6.80, df =5, p =0.24 p=0Z

-0.91 -046 0 046 0.76
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Results: overall

Dataset Number of Snippets Weights Estimate [95% CI]

° 1 23 —y 14.84% -0.52[-0.77,-0.14]
meta-analysis

° 2 12 o—-—-—c 7.88% -0.43 [-0.80, 0.20]
weights these two |

. 3 100 '—I—i 34.87% -().22 [-0.40, -0.03]
datasets (with 50 é »

. 50 —— 5.40% [0.03 [-0.25, 0.30]
and 100 snippets)

9 10 ' 1 6.33% 0.04 [-0.60, 0.66]
[ .
mUCh hlgher than ¢ 16 ._.__. 10.68% —0.36 [-0.73, 0.16]
the others ‘
RE Model .’— -1 100.00% -0.23 [-0.46, 0.03]
Test for Heterogeneity: Q = 6.80, df =5, p =0.24 p=0.07
| | I I I |
-0.91 -046 0 046 0.76
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Results: interpretation

e Our results give mild but suggestive support for our hypothesis

67



Results: interpretation

e Our results give mild but suggestive support for our hypothesis
o especially given our relatively conservative statistical methods

68



Results: interpretation

e Our results give mild but suggestive support for our hypothesis
o especially given our relatively conservative statistical methods
e The main limitation preventing us from making stronger
conclusions is the small number of snippets in prior work

69



Results: interpretation

e Our results give mild but suggestive support for our hypothesis
o especially given our relatively conservative statistical methods
e The main limitation preventing us from making stronger
conclusions is the small number of snippets in prior work
o future work: new study with a
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Results: secondary analyses: per-tool

° analysis:
o same meta-analysis using one tool’s warnings
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Results: secondary analyses: per-tool

° analysis:
o same meta-analysis using one tool’s warnings
o results were similar:
m alltools have same pattern of correlations
m givesus abit more confidence
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Results: secondary analyses: ablation

e |eave-one-out ablation analysis:
o same meta-analysis without the warnings from each tool
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Results: secondary analyses: ablation

e |eave-one-out ablation analysis:
o same meta-analysis without the warnings from each tool
o results nearly identical, implying no one tool dominates
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Results: secondary analyses: categories

e per-metric-category analysis:
o same meta-analysis, but with only metrics from one category
o correctness, rating, time, and physiological categories
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Results: secondary analyses: categories

e per-metric-category analysis:
o same meta-analysis, but with only metrics from one category
o correctness, rating, time, and physiological categories
o similar results; too-wide confidence intervals (except rating)
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° for verification tool builders, verification tool users,
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Contributions

The first empirical evidence of a correlation between verifiability
and understandability

o supports the common wisdom of verification experts
Implications for verification tool builders, verification tool users,
and comprehensibility researchers
A replication package with our scripts and data, so that others
can repeat or extend our experiments

o https://tinyurl.com/34hv45bm
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Contributions

e The first empirical evidence of a correlation between verifiability
and understandability
o supports the common wisdom of verification experts

e |mplications for verification tool builders, verification tool users,
and comprehensibility researchers

e Avreplication package with our scripts and data, so that others
can repeat or extend our experiments
o https://tinyurl.com/34hv45bm
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[Thanks to my fabulous collaborators! &
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