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High-level Problem: Specifying Legacy Code

Verification is the only way to

o “testing shows the presence of bugs, not their absence”

To scale to real programs, verifiers must be modular

o Downside: humans must write specifications

m Hard for legacy code

Pluggable typecheckers extend a host type system

Our contribution: a specialized
to pluggable typecheckers
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o

o Uber, Meta, AWS, Google, Oracle, etc.
e attractive to developers

o familiar, high precision, sound, fast checking, modular, ...
e downside: manual annotation of legacy codebases
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4 ™)
Are there other things in typecheckers

that are type-system-agnostic?
- Y,
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method bodies
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O

result

@Nullable

implemented as intra-procedural
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Observation: Local Type Inference

e Pluggable typecheckers implement local type inference within
method bodies
o reduces user effort: no annotations on local variables
o implemented as intra-procedural

Fortress getFort (City city) {
Fortress result = ;
if (city != )

@NonNull result = fortDB.get(city);
onNu

return result;
get ()
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O implementeu dS ITILh d=-pProcedurdi

Fortress getFort (City city) {
Fortress result = ;
if (city != )
result = fortDB.get(city);

return result;
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More complicated than it sounds...
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Both theoretical and practical problems

e termination?

o proof sketch based on a lifted type hierarchy (see paper for
details)
e many small, important details:
o separate compilation, storing intermediate results,
programmer-written types, warning suppressmns interaction
with defaulting, pre- and pog* = ' ~operties

like purity, side effects, etc. | All these details (and
more) in the paper!
k ) 37




Implementation

e Implemented as part of the Checker Framework (our tool is called
“Whole Program Inference” or “WPI”) for Java
o automatically works with all checkers built on the framework
e Scripts automate it for Maven and Gradle projects
e Youcantryitout:

https://checkerframework.org/manual/#whole-program-inference
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Experimental Methodology

e Collect verified projects from GitHub

O

O

annotated by a human to pass a Checker Framework checker
the annotations

e Use our WPI| to verify an unannotated codebase

e [wo metrics:

O

Count th{These metrics are proxies for human effort ]

annotation %: percentage of human-written annotations that
we recover exactly

warning reduction %: percentage of warnings on unannotated
code that our annotations remove 4
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Reasons WPI missed human-written annotations

e Methods with no callers (11% of human-written annotations)
o e.g., “safe” library routine marks parameters @Nnullable
e Generics (10%)
o future work
e We inferred something stronger (9%)
O e.g.,@Positive int instead of @NonNegative int
o Exact matching WPI’s effectiveness
m |f we count these, annotation % is 48%
e Longtail of other causes, none greater than 5%
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