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High-level Problem: Specifying Legacy Code

● Verification is the only way to guarantee correctness
○ “testing shows the presence of bugs, not their absence”

● To scale to real programs, verifiers must be modular
○ Downside: humans must write specifications

■ Hard for legacy code
● Pluggable typecheckers extend a host type system
● Our contribution: a new approach for type inference specialized 

to pluggable typecheckers
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Background: Pluggable Types

● widely adopted 
○ Uber, Meta, AWS, Google, Oracle, etc.

● attractive to developers
○ familiar, high precision, sound, fast checking, modular, …

● downside: manual annotation of legacy codebases

12



Traditional Solution: Type Inference

● Traditional type inference: constraint solving

13



Traditional Solution: Type Inference

● Traditional type inference: constraint solving
○ problem: need a new constraint system for each type system

14



Traditional Solution: Type Inference

● Traditional type inference: constraint solving
○ problem: need a new constraint system for each type system

■ we desire a system that is type-system-agnostic

15



Traditional Solution: Type Inference

● Traditional type inference: constraint solving
○ problem: need a new constraint system for each type system

■ we desire a system that is type-system-agnostic

16

Are there other things in typecheckers 
that are type-system-agnostic?
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● Pluggable typecheckers implement local type inference within 
method bodies
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Q:  Does dataflow already know whether the 
return type is @NonNull  or @Nullable?    YES!

Fortress getFort(City city) {
  Fortress result = null;
  if (city != LUXEMBOURG)

  result = fortDB.get(city);
  return result;
}



● wrap existing local inference algorithm in a fixpoint loop

Algorithm: Iterated Local Type Inference
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More complicated than it sounds…

Read the paper for details!
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Both theoretical and practical problems

● termination?
○ proof sketch based on a lifted type hierarchy (see paper for 

details)
● many small, important details:

○ separate compilation, storing intermediate results, 
programmer-written types, warning suppressions, interaction 
with defaulting, pre- and post-conditions, non-type properties 
like purity, side effects, etc. All these details (and 

more) in the paper!
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Implementation

● Implemented as part of the Checker Framework (our tool is called 
“Whole Program Inference” or “WPI”) for Java
○ automatically works with all checkers built on the framework

● Scripts automate it for Maven and Gradle projects
● You can try it out:

https://checkerframework.org/manual/#whole-program-inference
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● Collect verified projects from GitHub
○ annotated by a human to pass a Checker Framework checker

● Remove the annotations
○ Count the checker warnings on unannotated code

● Use our WPI tool to infer new annotations
● Two metrics:

○ annotation %: percentage of human-written annotations that 
we recover exactly

○ warning reduction %: percentage of warnings on unannotated 
code that our annotations remove

These metrics are proxies for human effort 
to verify an unannotated codebase
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Experimental Results

● Dataset of 12 projects (88,680 NCNB LoC total) 
○ 11 distinct typecheckers (median 3.5 checkers/project)
○ 803 human-written annotations
○ with annotations removed, the checkers issue 361 warnings
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● Methods with no callers (11% of human-written annotations)
○ e.g., “safe” library routine marks parameters @Nullable 

● Generics (10%)
○ future work

● We inferred something stronger (9%)
○ e.g., @Positive int instead of @NonNegative int
○ Exact matching underestimates WPI’s effectiveness

■ If we count these, annotation % is 48%
● Long tail of other causes, none greater than 5%

Reasons WPI missed human-written annotations
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