Pluggable Type Inference for Free

Martin Kellogg’, Daniel Daskiewicz’, Loi Ngo Duc Nguyen’,
Muyeed Ahmed? Michael D. Ernst™

INew Jersey Institute of Technology
"University of Washington

High-level Problem: Specifying Legacy Code

e Verificationis the only way to
o “testing shows the presence of bugs, not their absence”

High-level Problem: Specifying Legacy Code

e Verificationis the only way to
o “testing shows the presence of bugs, not their absence”
e Toscaletoreal programs, verifiers must be modular
o Downside: humans must write specifications
m Hard for legacy code

High-level Problem: Specifying Legacy Code

e \Verificationis the only way to guarantee correctness
o “testing shows the presence of bugs, not their absence”
e Toscaletoreal programs, verifiers must be modular
o Downside: humans must write specifications
m Hard for legacy code
e Pluggable typecheckers extend a host type system

High-level Problem: Specifying Legacy Code

Verification is the only way to

o “testing shows the presence of bugs, not their absence”

To scale to real programs, verifiers must be modular

o Downside: humans must write specifications

m Hard for legacy code

Pluggable typecheckers extend a host type system

Our contribution: a specialized
to pluggable typecheckers

Background: Pluggable Types

int x

Background: Pluggable Types

@QPositive int x

Background: Pluggable Types

@Negative int x

Background: Pluggable Types

@NonConstant int x

Background: Pluggable Types

o Uber, Meta, AWS, Google, Oracle, etc.

10

Background: Pluggable Types

o
o Uber, Meta, AWS, Google, Oracle, etc.
e attractive to developers
o familiar, high precision, sound, fast checking, modular, ...

11

Background: Pluggable Types

o

o Uber, Meta, AWS, Google, Oracle, etc.
e attractive to developers

o familiar, high precision, sound, fast checking, modular, ...
e downside: manual annotation of legacy codebases

12

Traditional Solution: Type Inference

e Traditional type inference: constraint solving

13

Traditional Solution: Type Inference

e Traditional type inference: constraint solving
o problem: need a new constraint system for each type system

14

Traditional Solution: Type Inference

e Traditional type inference: constraint solving
o problem: need a new constraint system for each type system
m wedesire asystem thatis type-system-agnostic

15

Traditional Solution: Type Inference

e Traditional type inference: constraint solving
o problem: need a new constraint system for each type system
m wedesire asystem thatis type-system-agnostic

4 ™)
Are there other things in typecheckers

that are type-system-agnostic?
- Y,

Observation: Local Type Inference

e Pluggable typecheckers implement local type inference within
method bodies

17

Observation: Local Type Inference

e Pluggable typecheckers implement local type inference within
method bodies
o reduces user effort: no annotations on local variables

18

Observation: Local Type Inference

e Pluggable typecheckers implement local type inference within
method bodies
o reduces user effort: no annotations on local variables
o implemented as intra-procedural

19

Observation: Local Type Inference

e Pluggable typecheckers implement local type inference within
method bodies
o reduces user effort: no annotations on local variables
o implemented as intra-procedural

Fortress getFort (City city) {
Fortress result =
if (city !=)
result = fortDB.get(city);

return result;

Observation: Local Type Inference

e Pluggable typecheckers implement local type inference within

method bodies

o reduces user effort: no annotations on local variables

O

result

@Nullable

implemented as intra-procedural

Fortress getFort (City city) {
Fortress result = ;
if (city !=)
result = fortDB.get(city);

return result;

21

Observation: Local Type Inference

e Pluggable typecheckers implement local type inference within
method bodies
o reduces user effort: no annotations on local variables
o implemented as intra-procedural

Fortress getFort (City city) {
Fortress result = ;
if (city !=)

@NonNull result = fortDB.get(city);
onNu

return result;
get ()

22

Observation: Local Type Inference

. Plugg] L]] M | T ey ' —_— o C . Within
methg Q: Does dataflow already know whether the
o red returntypeis @NonNull Or @Nullable? S

O implementeu dS ITILh d=-pProcedurdi

Fortress getFort (City city) {
Fortress result = ;
if (city !=)
result = fortDB.get(city);

return result;

Observation: Local Type Inference

. Plugg] L]] M | T ey ' —_— o C . Within
methg Q: Does dataflow already know whether the
o re{ returntypeis @NonNull Or @Nullable? YES! S

O implementeu dS ITILh d=-pProcedurdi

Fortress getFort (City city) {
Fortress result = ;
if (city !=)
result = fortDB.get(city);

return result;

Algorithm: Iterated Local Type Inference

e wrap existing local inference algorithm in a fixpoint loop

25

Algorithm: Iterated Local Type Inference

e wrap existing local inference algorithm in a fixpoint loop

Start —{ Run a checker

Algorithm: Iterated Local Type Inference

e wrap existing local inference algorithm in a fixpoint loop

Record

/» summaries

Start —{ Run a checker

Algorithm: Iterated Local Type Inference

e wrap existing local inference algorithm in a fixpoint loop

Record

/_> summaries

Start —{ Run a checker

Compare
summaries

Algorithm: Iterated Local Type Inference

e wrap existing local inference algorithm in a fixpoint loop

Record

/_> summaries

Start —{ Run a checker

Changes
Compare

summaries

Algorithm: Iterated Local Type Inference

e wrap existing local inference algorithm in a fixpoint loop

Record

/» summaries

Start —{ Run a checker

Changes
Compare
/ summaries
Done No changes

Algorithm: Iterated Local Type Inference

e wrap existing local inference algorithm in a fixpoint loop

Record
summaries

Start —{ Run a checker

Changes
Compare
/ summaries
Done No changes

More complicated than it sounds...

'+ 77’L<f() P QFy TRy - - 7fn © gF, 7-/7,,) ‘4R TR
'vieo,..., n.e;: T I'FVie€0,...,n.qa, Ta, Cqr, T =Fvie0,....,0 ¢ T
yoes M €01 GA; TA, - 94 T E 4R TR yong M Ji 1 QI TR INVOKE
I'Fm(eo,...,en): qr TR ErVieo,...,n f; : LUBg(qa;, q1.) 7F,

['Fnew 7(f1: g TFy,--5fnt GF, TF,): QR TR
F'-Viel,...,n. e : qa,; Ta, I'-Viel,...,n. qa, TA, C qF, TF, Y E Liensa s, 5 01 T N
Tt new T(e1,...,e,) : @r TR EEVYielwumafy @ LUBg(qa,sdn) T

T4 C T, =+ f T
Ya b f : 9ITF pORMAL-ASSIGN
VB (94,41) TF

Read the paper for detaIIS! % Dieqr Sl 8 @ W osoN

J LUBq(g4,4q1) 77

'+ 7"/(f(l ‘P qFy TFoy - - '7f” * 4F, Tl"n) ‘4R TR
'te :qaTa 'k ga7a Eq}iTR :Fm(foi qF; Trsvessstnt g5, TFn) * 41 TR RETURN
return e € m EFm(fo,...,fn) : LUBg(qa,qr1) Tr

'k TnB(.f(J,; * 4By TBy» - --;f,,,,,, © 4B, TB,,) ‘4R TRy
T'Fmp(for : qp, TPys -« s fnp : @P, TP,) : 4Rp TRp
't gqrs TRy C qrp TRy I'-Vi€O,...,np. g, 7B, C gp, TP,
Fnp = np EFmp(fos ! 4ByTByr--+sfnp * 4B.TB.) * 4Rs—I TRs
EFmp(fop : qPyTRys-- -1 fnp : 4P.TP,) * QRp—I TRp
. :FV@GO,...TnB.fBI : qu_il TB, ‘ :FY@GO,...,np. fp, t ap,—r1 TPZ. o—
I'Fmp(fos @ @By TBos--+» fns © 4B, TB,) i a valid override of mp(fop : @py TPys- -+ fnp : AP, TP,

Ermp(fop : R, TRy s frp @ aP,TP,) * LUBQ(qRs—1,9Rp—1) TRp
2 FY1€0;:::5nps fpi : LUBQ(qBi,], qPi,[) TP;

32

Both theoretical and practical problems

e termination?

33

Both theoretical and practical problems

e termination?
o proof sketch based on a lifted type hierarchy (see paper for
details)

34

Both theoretical and practical problems

e termination?
o proof sketch based on a lifted type hierarchy (see paper for
details)
e many small, important details:

35

Both theoretical and practical problems

e termination?

o proof sketch based on a lifted type hierarchy (see paper for
details)

e many small, important details:
o separate compilation, storing intermediate results,
programmer-written types, warning suppressions, interaction

with defaulting, pre- and post-conditions, non-type properties
like purity, side effects, etc.

36

Both theoretical and practical problems

e termination?

o proof sketch based on a lifted type hierarchy (see paper for
details)
e many small, important details:
o separate compilation, storing intermediate results,
programmer-written types, warning suppressmns interaction
with defaulting, pre- and pog* = ' ~operties

like purity, side effects, etc. | All these details (and
more) in the paper!
k) 37

Implementation

e Implemented as part of the Checker Framework (our tool is called
“Whole Program Inference” or “WPI”) for Java
o automatically works with all checkers built on the framework
e Scripts automate it for Maven and Gradle projects
e Youcantryitout:

https://checkerframework.org/manual/#whole-program-inference

38

https://checkerframework.org/manual/#whole-program-inference

Experimental Methodology

e Collect verified projects from GitHub
o annotated by a human to pass a Checker Framework checker

39

Experimental Methodology

e Collect verified projects from GitHub

o annotated by a human to pass a Checker Framework checker
° the annotations

o Count the checker warnings on unannotated code

40

Experimental Methodology

e Collect verified projects from GitHub

o annotated by a human to pass a Checker Framework checker
° the annotations

o Count the checker warnings on unannotated code
e Useour WPI tool to

41

Experimental Methodology

e Collect verified projects from GitHub
o annotated by a human to pass a Checker Framework checker
° the annotations
o Count the checker warnings on unannotated code
e Useour WPI tool to
e Two metrics:
o annotation %: percentage of human-written annotations that
we recover exactly

42

Experimental Methodology

e Collect verified projects from GitHub

O

O

annotated by a human to pass a Checker Framework checker
the annotations
Count the checker warnings on unannotated code

e Useour WPI tool to
e Two metrics:

O

annotation %: percentage of human-written annotations that
we recover exactly

warning reduction %: percentage of warnings on unannotated
code that our annotations remove a

Experimental Methodology

e Collect verified projects from GitHub

O

O

annotated by a human to pass a Checker Framework checker
the annotations

e Use our WPI| to verify an unannotated codebase

e [wo metrics:

O

Count th{These metrics are proxies for human effort]

annotation %: percentage of human-written annotations that
we recover exactly

warning reduction %: percentage of warnings on unannotated
code that our annotations remove 4

Experimental Results

e Dataset of 12 projects (88,680 NCNB LoC total)
o 11distinct typecheckers (median 3.5 checkers/project)
o 803 human-written annotations
o with annotations removed, the checkers issue 361 warnings

45

Experimental Results

e Dataset of 12 projects (88,680 NCNB LoC total)

o 11distinct typecheckers (median 3.5 checkers/project)

o 803 human-written annotations

o with annotations removed, the checkers issue 361 warnings
e After applying our tool:

o 39% of human-written annotations were exactly inferred

46

Experimental Results

e Dataset of 12 projects (88,680 NCNB LoC total)

o 11distinct typecheckers (median 3.5 checkers/project)

o 803 human-written annotations

o with annotations removed, the checkers issue 361 warnings
e After applying our tool:

o 39% of human-written annotations were exactly inferred

o 45% of warnings are eliminated

47

Experimental Results

e Dataset of 12 projects (88,680 NCNB LoC total)

o 11distinct typecheckers (median 3.5 checkers/project)

o 803 human-written annotations

o with annotations removed, the checkers issue 361 warnings
e After applying our tool:

o 39% of human-written annotations were exactly inferred

o 45% of warnings are eliminated

o summaries contain a total of 17,940 annotations

48

Experimental Results

e Dataset of 12 projects (88,680 NCNB LoC total)
o 11distinct typecheckers (median 3.5 checkers/project)

o 803 human-writt Significant reduction in human effort
o with annotations e ,

e After applying our tool:

o summaries contain a total of 17,940 annotations

49

Reasons WPI missed human-written annotations

e Methods with no callers (11% of human-written annotations)
o e.g., “safe” library routine marks parameters @Nnullable

50

Reasons WPI missed human-written annotations

e Methods with no callers (11% of human-written annotations)
o e.g., “safe” library routine marks parameters @Nnullable

e Generics (10%)
o future work

51

Reasons WPI missed human-written annotations

e Methods with no callers (11% of human-written annotations)
o e.g., “safe” library routine marks parameters @Nnullable
e Generics (10%)
o future work
e We inferred something stronger (9%)
O e.g.,@Positive int instead of @NonNegative int
o Exact matching WPI’s effectiveness
m |f we count these, annotation % is 48%

52

Reasons WPI missed human-written annotations

e Methods with no callers (11% of human-written annotations)
o e.g., “safe” library routine marks parameters @Nnullable
e Generics (10%)
o future work
e We inferred something stronger (9%)
O e.g.,@Positive int instead of @NonNegative int
o Exact matching WPI’s effectiveness
m |f we count these, annotation % is 48%
e Longtail of other causes, none greater than 5%

53

Contributions

e |[terated local type inference algorithm
o enables type inference for any pluggable typechecker

54

Contributions

e |[terated local type inference algorithm
o enables type inference for any pluggable typechecker
m “for free”: no code changes necessary

55

Contributions

e [terated local type inference algorithm
o enables type inference for any pluggable typechecker
m “for free”: no code changes necessary
e Formalization and proof of termination

56

Contributions

e |[terated local type inference algorithm
o enables type inference for any pluggable typechecker
m “for free”: no code changes necessary
e Formalization and proof of termination
° for the Checker Framework
o lots of solved

57

Contributions

e |[terated local type inference algorithm
o enables type inference for any pluggable typechecker
m “for free”: no code changes necessary
e Formalization and proof of termination
° for the Checker Framework
o lots of solved
e Experiments show that it reduces proxies for human effort:
o annotation count 39% lower
o warning count 45% lower

58

Contributions

e [terated local type inference algorithm
o enables type inference for any pluggable typechecker
m “for free”: no code changes necessary
e Formalization and proof of termination
° for the Checker Framework
o lots of solved
e Experiments show that it reduces proxies for human effort:
o annotation count 39% lower
o warning count 45% lower

https://checkerframework.org/manual/#whole-program-inference s

https://checkerframework.org/manual/#whole-program-inference

60

