
Pluggable Type Inference for Free

Martin Kellogg , Daniel Daskiewicz , Loi Ngo Duc Nguyen,
Muyeed Ahmed , Michael D. Ernst

New Jersey Institute of Technology
 University of Washington

1

High-level Problem: Specifying Legacy Code

● Verification is the only way to guarantee correctness
○ “testing shows the presence of bugs, not their absence”

2

High-level Problem: Specifying Legacy Code

● Verification is the only way to guarantee correctness
○ “testing shows the presence of bugs, not their absence”

● To scale to real programs, verifiers must be modular
○ Downside: humans must write specifications

■ Hard for legacy code

3

High-level Problem: Specifying Legacy Code

● Verification is the only way to guarantee correctness
○ “testing shows the presence of bugs, not their absence”

● To scale to real programs, verifiers must be modular
○ Downside: humans must write specifications

■ Hard for legacy code
● Pluggable typecheckers extend a host type system

4

High-level Problem: Specifying Legacy Code

● Verification is the only way to guarantee correctness
○ “testing shows the presence of bugs, not their absence”

● To scale to real programs, verifiers must be modular
○ Downside: humans must write specifications

■ Hard for legacy code
● Pluggable typecheckers extend a host type system
● Our contribution: a new approach for type inference specialized

to pluggable typecheckers

5

Background: Pluggable Types

 @Positive int x

6

Background: Pluggable Types

 @Positive int x

7

Background: Pluggable Types

 @Negative int x

8

Background: Pluggable Types

 @NonConstant int x

9

Background: Pluggable Types

● widely adopted
○ Uber, Meta, AWS, Google, Oracle, etc.

10

Background: Pluggable Types

● widely adopted
○ Uber, Meta, AWS, Google, Oracle, etc.

● attractive to developers
○ familiar, high precision, sound, fast checking, modular, …

11

Background: Pluggable Types

● widely adopted
○ Uber, Meta, AWS, Google, Oracle, etc.

● attractive to developers
○ familiar, high precision, sound, fast checking, modular, …

● downside: manual annotation of legacy codebases

12

Traditional Solution: Type Inference

● Traditional type inference: constraint solving

13

Traditional Solution: Type Inference

● Traditional type inference: constraint solving
○ problem: need a new constraint system for each type system

14

Traditional Solution: Type Inference

● Traditional type inference: constraint solving
○ problem: need a new constraint system for each type system

■ we desire a system that is type-system-agnostic

15

Traditional Solution: Type Inference

● Traditional type inference: constraint solving
○ problem: need a new constraint system for each type system

■ we desire a system that is type-system-agnostic

16

Are there other things in typecheckers
that are type-system-agnostic?

● Pluggable typecheckers implement local type inference within
method bodies

Observation: Local Type Inference

17

● Pluggable typecheckers implement local type inference within
method bodies
○ reduces user effort: no annotations on local variables

Observation: Local Type Inference

18

● Pluggable typecheckers implement local type inference within
method bodies
○ reduces user effort: no annotations on local variables
○ implemented as intra-procedural dataflow analysis

Observation: Local Type Inference

19

● Pluggable typecheckers implement local type inference within
method bodies
○ reduces user effort: no annotations on local variables
○ implemented as intra-procedural dataflow analysis

Observation: Local Type Inference

20

Fortress getFort(City city) {
 Fortress result = null;
 if (city != LUXEMBOURG)

 result = fortDB.get(city);
 return result;
}

Fortress getFort(City city) {
 Fortress result = null;
 if (city != LUXEMBOURG)

 result = fortDB.get(city);
 return result;
}

● Pluggable typecheckers implement local type inference within
method bodies
○ reduces user effort: no annotations on local variables
○ implemented as intra-procedural dataflow analysis

Observation: Local Type Inference

21

dataflow detects that
result is @Nullable
here …

Fortress getFort(City city) {
 Fortress result = null;
 if (city != LUXEMBOURG)

 result = fortDB.get(city);
 return result;
}

● Pluggable typecheckers implement local type inference within
method bodies
○ reduces user effort: no annotations on local variables
○ implemented as intra-procedural dataflow analysis

Observation: Local Type Inference

22

… but @NonNull here
(assuming get() cannot
return null)

● Pluggable typecheckers implement local type inference within
method bodies
○ reduces user effort: no annotations on local variables
○ implemented as intra-procedural dataflow analysis

Observation: Local Type Inference

23

Q: Does dataflow already know whether the
return type is @NonNull or @Nullable?

Fortress getFort(City city) {
 Fortress result = null;
 if (city != LUXEMBOURG)

 result = fortDB.get(city);
 return result;
}

● Pluggable typecheckers implement local type inference within
method bodies
○ reduces user effort: no annotations on local variables
○ implemented as intra-procedural dataflow analysis

Observation: Local Type Inference

24

Q: Does dataflow already know whether the
return type is @NonNull or @Nullable? YES!

Fortress getFort(City city) {
 Fortress result = null;
 if (city != LUXEMBOURG)

 result = fortDB.get(city);
 return result;
}

● wrap existing local inference algorithm in a fixpoint loop

Algorithm: Iterated Local Type Inference

25

● wrap existing local inference algorithm in a fixpoint loop

Algorithm: Iterated Local Type Inference

Run a checkerStart

26

● wrap existing local inference algorithm in a fixpoint loop

Algorithm: Iterated Local Type Inference

Run a checker

Record
summaries

Start

27

● wrap existing local inference algorithm in a fixpoint loop

Algorithm: Iterated Local Type Inference

Run a checker

Record
summaries

Compare
summaries

Start

28

● wrap existing local inference algorithm in a fixpoint loop

Algorithm: Iterated Local Type Inference

Run a checker

Record
summaries

Compare
summaries

Changes

Start

29

● wrap existing local inference algorithm in a fixpoint loop

Algorithm: Iterated Local Type Inference

Run a checker

Record
summaries

Compare
summaries

Done No changes

Changes

Start

30

● wrap existing local inference algorithm in a fixpoint loop

Algorithm: Iterated Local Type Inference

Run a checker

Record
summaries

Compare
summaries

Done No changes

Changes

Start

31

More complicated than it sounds…

Read the paper for details!

32

Both theoretical and practical problems

● termination?

33

Both theoretical and practical problems

● termination?
○ proof sketch based on a lifted type hierarchy (see paper for

details)

34

Both theoretical and practical problems

● termination?
○ proof sketch based on a lifted type hierarchy (see paper for

details)
● many small, important details:

35

Both theoretical and practical problems

● termination?
○ proof sketch based on a lifted type hierarchy (see paper for

details)
● many small, important details:

○ separate compilation, storing intermediate results,
programmer-written types, warning suppressions, interaction
with defaulting, pre- and post-conditions, non-type properties
like purity, side effects, etc.

36

Both theoretical and practical problems

● termination?
○ proof sketch based on a lifted type hierarchy (see paper for

details)
● many small, important details:

○ separate compilation, storing intermediate results,
programmer-written types, warning suppressions, interaction
with defaulting, pre- and post-conditions, non-type properties
like purity, side effects, etc. All these details (and

more) in the paper!
37

Implementation

● Implemented as part of the Checker Framework (our tool is called
“Whole Program Inference” or “WPI”) for Java
○ automatically works with all checkers built on the framework

● Scripts automate it for Maven and Gradle projects
● You can try it out:

https://checkerframework.org/manual/#whole-program-inference

38

https://checkerframework.org/manual/#whole-program-inference

Experimental Methodology

● Collect verified projects from GitHub
○ annotated by a human to pass a Checker Framework checker

39

Experimental Methodology

● Collect verified projects from GitHub
○ annotated by a human to pass a Checker Framework checker

● Remove the annotations
○ Count the checker warnings on unannotated code

40

Experimental Methodology

● Collect verified projects from GitHub
○ annotated by a human to pass a Checker Framework checker

● Remove the annotations
○ Count the checker warnings on unannotated code

● Use our WPI tool to infer new annotations

41

Experimental Methodology

● Collect verified projects from GitHub
○ annotated by a human to pass a Checker Framework checker

● Remove the annotations
○ Count the checker warnings on unannotated code

● Use our WPI tool to infer new annotations
● Two metrics:

○ annotation %: percentage of human-written annotations that
we recover exactly

42

Experimental Methodology

● Collect verified projects from GitHub
○ annotated by a human to pass a Checker Framework checker

● Remove the annotations
○ Count the checker warnings on unannotated code

● Use our WPI tool to infer new annotations
● Two metrics:

○ annotation %: percentage of human-written annotations that
we recover exactly

○ warning reduction %: percentage of warnings on unannotated
code that our annotations remove 43

Experimental Methodology

● Collect verified projects from GitHub
○ annotated by a human to pass a Checker Framework checker

● Remove the annotations
○ Count the checker warnings on unannotated code

● Use our WPI tool to infer new annotations
● Two metrics:

○ annotation %: percentage of human-written annotations that
we recover exactly

○ warning reduction %: percentage of warnings on unannotated
code that our annotations remove

These metrics are proxies for human effort
to verify an unannotated codebase

44

Experimental Results

● Dataset of 12 projects (88,680 NCNB LoC total)
○ 11 distinct typecheckers (median 3.5 checkers/project)
○ 803 human-written annotations
○ with annotations removed, the checkers issue 361 warnings

45

Experimental Results

● Dataset of 12 projects (88,680 NCNB LoC total)
○ 11 distinct typecheckers (median 3.5 checkers/project)
○ 803 human-written annotations
○ with annotations removed, the checkers issue 361 warnings

● After applying our tool:
○ 39% of human-written annotations were exactly inferred

46

Experimental Results

● Dataset of 12 projects (88,680 NCNB LoC total)
○ 11 distinct typecheckers (median 3.5 checkers/project)
○ 803 human-written annotations
○ with annotations removed, the checkers issue 361 warnings

● After applying our tool:
○ 39% of human-written annotations were exactly inferred
○ 45% of warnings are eliminated

47

Experimental Results

● Dataset of 12 projects (88,680 NCNB LoC total)
○ 11 distinct typecheckers (median 3.5 checkers/project)
○ 803 human-written annotations
○ with annotations removed, the checkers issue 361 warnings

● After applying our tool:
○ 39% of human-written annotations were exactly inferred
○ 45% of warnings are eliminated
○ summaries contain a total of 17,940 annotations

48

Experimental Results

● Dataset of 12 projects (88,680 NCNB LoC total)
○ 11 distinct typecheckers (median 3.5 checkers/project)
○ 803 human-written annotations
○ with annotations removed, the checkers issue 361 warnings

● After applying our tool:
○ 39% of human-written annotations were exactly inferred
○ 45% of warnings are eliminated
○ summaries contain a total of 17,940 annotations

49

Significant reduction in human effort

● Methods with no callers (11% of human-written annotations)
○ e.g., “safe” library routine marks parameters @Nullable

Reasons WPI missed human-written annotations

50

● Methods with no callers (11% of human-written annotations)
○ e.g., “safe” library routine marks parameters @Nullable

● Generics (10%)
○ future work

Reasons WPI missed human-written annotations

51

● Methods with no callers (11% of human-written annotations)
○ e.g., “safe” library routine marks parameters @Nullable

● Generics (10%)
○ future work

● We inferred something stronger (9%)
○ e.g., @Positive int instead of @NonNegative int
○ Exact matching underestimates WPI’s effectiveness

■ If we count these, annotation % is 48%

Reasons WPI missed human-written annotations

52

● Methods with no callers (11% of human-written annotations)
○ e.g., “safe” library routine marks parameters @Nullable

● Generics (10%)
○ future work

● We inferred something stronger (9%)
○ e.g., @Positive int instead of @NonNegative int
○ Exact matching underestimates WPI’s effectiveness

■ If we count these, annotation % is 48%
● Long tail of other causes, none greater than 5%

Reasons WPI missed human-written annotations

53

Contributions
● Iterated local type inference algorithm

○ enables type inference for any pluggable typechecker

54

Contributions
● Iterated local type inference algorithm

○ enables type inference for any pluggable typechecker
■ “for free”: no code changes necessary

55

Contributions
● Iterated local type inference algorithm

○ enables type inference for any pluggable typechecker
■ “for free”: no code changes necessary

● Formalization and proof of termination

56

Contributions
● Iterated local type inference algorithm

○ enables type inference for any pluggable typechecker
■ “for free”: no code changes necessary

● Formalization and proof of termination
● Implementation for the Checker Framework

○ lots of practical problems solved

57

Contributions
● Iterated local type inference algorithm

○ enables type inference for any pluggable typechecker
■ “for free”: no code changes necessary

● Formalization and proof of termination
● Implementation for the Checker Framework

○ lots of practical problems solved
● Experiments show that it reduces proxies for human effort:

○ annotation count 39% lower
○ warning count 45% lower

58

Contributions
● Iterated local type inference algorithm

○ enables type inference for any pluggable typechecker
■ “for free”: no code changes necessary

● Formalization and proof of termination
● Implementation for the Checker Framework

○ lots of practical problems solved
● Experiments show that it reduces proxies for human effort:

○ annotation count 39% lower
○ warning count 45% lower

https://checkerframework.org/manual/#whole-program-inference 59

https://checkerframework.org/manual/#whole-program-inference

60

